Programs for Applying Symmetries of PDEs

Thomas Wolf
Department of Mathematics
Brock University
St.Catharines
Ontario, Canada L2S 3A1
twolf@brocku.ca

March 20, 2004

Abstract

In this paper the programs APPLYSYM, QUASILINPDE and DETRAFO are described which
alm at the utilization of infinitesimal symmetries of differential equations. The purpose
of QUASILINPDE is the general solution of quasilinear PDEs. This procedure is used by
APPLYSYM for the application of point symmetries for either

e calculating similarity variables to perform a point transformation which lowers the
order of an ODE or effectively reduces the number of explicitly occuring independent
variables in a PDE(-system) or for

e generalizing given special solutions of ODEs / PDEs with new constant parameters.

The program DETRAFO performs arbitrary point- and contact transformations of ODEs
/ PDEs and is applied if similarity and symmetry variables have been found. The program
APPLYSYM is used in connection with the program LIEPDE for formulating and solving
the conditions for point- and contact symmetries which is described in [4]. The actual
problem solving is done in all these programs through a call to the package CRACK for
solving overdetermined PDE-systems.

Contents

1 Introduction and overview of the symmetry
method

1.1 The first step: Formulating the symmetry conditions 3

1.2 The second step: Solving the symmetry conditions 5
1.3 The third step: Application of infinitesimal symmetries 8
2 Applying symmetries with APPLYSYM 8
2.1 The first mode: Calculation of similarity and symmetry variables 8
2.2 The second mode: Generalization of special solutions 10
2.3 Syntax 11
2.4 Example: A second order ODE 12
2.5 Limitations of APPLYSYM e 17
3 Solving quasilinear PDEs 18
3.1 The content of QUASILINPDE o e 18
3.2 Syntax . ..o e 20
3.3 Examples 21
3.4 Limitations of QUASILINPDE ittt 22
4 Transformation of DEs 22
4.1 The content of DETRAFO 22
4.2 Syntax 23
4.3 Limitations of DETRAFO e 23
5 Availability 24

1 Introduction and overview of the symmetry
method

The investigation of infinitesimal symmetries of differential equations (DEs) with computer
algebra programs attrackted considerable attention over the last years. Corresponding programs
are available in all major computer algebra systems. In a review article by W. Hereman [1]
about 200 references are given, many of them describing related software.

One reason for the popularity of the symmetry method is the fact that Sophus Lie’s method
[2],[3] is the most widely used method for computing exact solutions of non-linear DEs. Another
reason is that the first step in this method, the formulation of the determining equation for the
generators of the symmetries, can already be very cumbersome, especially in the case of PDEs of
higher order and/or in case of many dependent and independent variables. Also, the formulation
of the conditions is a straight forward task involving only differentiations and basic algebra -

an ideal task for computer algebra systems. Less straight forward is the automatic solution of
the symmetry conditions which is the strength of the program LIEPDE (for a comparison with
another program see [4]).

The novelty described in this paper are programs aiming at the final third step: Applying
symmetries for

e calculating similarity variables to perform a point transformation which lowers the order
of an ODE or effectively reduces the number of explicitly occuring independent variables
of a PDE(-system) or for

e generalizing given special solutions of ODEs/PDEs with new constant parameters.

Programs which run on their own but also allow interactive user control are indispensible
for these calculations. On one hand the calculations can become quite lengthy, like variable
transformations of PDEs (of higher order, with many variables). On the other hand the freedom
of choosing the right linear combination of symmetries and choosing the optimal new symmetry-
and similarity variables makes it necessary to ‘play’ with the problem interactively.

The focus in this paper is directed on questions of implementation and efficiency, no prin-
cipally new mathematics is presented.

In the following subsections a review of the first two steps of the symmetry method is given
as well as the third, i.e. the application step is outlined. Each of the remaining sections is
devoted to one procedure.

1.1 The first step: Formulating the symmetry conditions
To obey classical Lie-symmetries, differential equations
Hy=0 (1)

for unknown functions y® 1 < o < p of independent variables 2/, 1 < i < ¢ must be
forminvariant against infinitesimal transformations
F=a'+ef, §r=y" +en® (2)

in first order of . To transform the equations (1) by (2), derivatives of y* must be transformed,
i.e. the part linear in £ must be determined. The corresponding formulas are (see e.g. [10],
[20])

~ _ (e «@ 2
Upge = Yo T4 T0() |
o oD, . D¢ 3)
My ejr—rin = Dk iJ1--Jk—1 Dk

where D/Dz* means total differentiation w.r.t. z* and from now on lower latin indices of
functions y®, (and later u®) denote partial differentiation w.r.t. the independent variables z*,
(and later v*). The complete symmetry condition then takes the form

XHy = 0 mod Hy=0 (4)
o, 0 0 0 0

X = &— *— o & .. o _— 5

o T oy + 1 e + Tn e o D e (5)

where mod H,4 = 0 means that the original PDE-system is used to replace some partial deriva-
tives of y to reduce the number of independent variables, because the symmetry condition (4)
must be fulfilled identically in 2%, y® and all partial derivatives of y°.

For point symmetries, £, n® are functions of 27,y and for contact symmetries they depend
on z7,y” and y,f . We restrict ourself to point symmetries as those are the only ones that can
be applied by the current version of the program APPLYSYM (see below). For literature about
generalized symmetries see [1].

Though the formulation of the symmetry conditions (4), (5), (3) is straightforward and
handled in principle by all related programs [1], the computational effort to formulate the
conditions (4) may cause problems if the number of ' and y® is high. This can partially be
avoided if at first only a few conditions are formulated and solved such that the remaining ones
are much shorter and quicker to formulate.

A first step in this direction is to investigate one PDE H4 = 0 after another, as done in [22].
Two methods to partition the conditions for a single PDE are described by Bocharov/Bronstein
[9] and Stephani [20].

In the first method only those terms of the symmetry condition X Hy = 0 are calculated
which contain at least a derivative of y® of a minimal order m. Setting coefficients of these u-
derivatives to zero provides symmetry conditions. Lowering the minimal order m successively
then gradually provides all symmetry conditions.

The second method is even more selective. If H 4 is of order n then only terms of the symme-
try condition X H4 = 0 are generated which contain n'th order derivatives of y*. Furthermore
these derivatives must not occur in H, itself. They can therefore occur in the symmetry
condition (4) only in n$, , ,i.e. in the terms

OH 4
ayﬁ...jn.

(0%

If only coefficients of n’th order derivatives of y® need to be accurate to formulate prelimi-
nary conditions then from the total derivatives to be taken in (3) only that part is performed
which differentiates w.r.t. the highest y®-derivatives. This means, for example, to form only

ye, 0/0y2, if the expression, which is to be differentiated totally w.r.t. z*, contains at most
second order derivatives of y*.

The second method is applied in LIEPDE. Already the formulation of the remaining condi-
tions is speeded up considerably through this iteration process. These methods can be applied if
systems of DEs or single PDEs of at least second order are investigated concerning symmetries.

1.2 The second step: Solving the symmetry conditions

The second step in applying the whole method consists in solving the determining conditions
(4), (5), (3) which are linear homogeneous PDEs for £/, . The complete solution of this system
is not algorithmic any more because the solution of a general linear PDE-system is as difficult
as the solution of its non-linear characteristic ODE-system which is not covered by algorithms
so far.

Still algorithms are used successfully to simplify the PDE-system by calculating its standard
normal form and by integrating exact PDEs if they turn up in this simplification process [4].
One problem in this respect, for example, concerns the optimization of the symbiosis of both
algorithms. By that we mean the ranking of priorities between integrating, adding integrability
conditions and doing simplifications by substitutions - all depending on the length of expressions
and the overall structure of the PDE-system. Also the extension of the class of PDEs which
can be integrated exactly is a problem to be pursuit further.

The program LIEPDE which formulates the symmetry conditions calls the program CRACK
to solve them. This is done in a number of successive calls in order to formulate and solve
some first order PDEs of the overdetermined system first and use their solution to formulate
and solve the next subset of conditions as described in the previous subsection. Also, LIEPDE
can work on DEs that contain parametric constants and parametric functions. An ansatz for
the symmetry generators can be formulated. For more details see [4] or [17].

The procedure LIEPDE is called through
LIEPDE (problem,symtype,flist,inequ) ;

All parameters are lists.

The first parameter specifies the DEs to be investigated:
problem has the form {equations, ulist, zlist} where

equations is a list of equations, each has the form df (ui,..)=... where
the LHS (left hand side) df (ui, ..) is selected such that
- The RHS (right h.s.) of an equations must not include
the derivative on the LHS nor a derivative of it.
- Neither the LHS nor any derivative of it of any equation
may occur in any other equation.

- Each of the unknown functions occurs on the LHS of
exactly one equation.
ulist is a list of function names, which can be chosen freely
xlist is a list of variable names, which can be chosen freely

Equations can be given as a list of single differential expressions and then the program will try
to bring them into the ‘solved form’ df (ui,..)=... automatically. If equations are given in
the solved form then the above conditions are checked and execution is stopped it they are not
satisfied. An easy way to get the equations in the desired form is to use
FIRST SOLVE({eql,eq2,...},{one highest derivative for each function u})

(see the example of the Karpman equations in LIEPDE.TST). The example of the Burgers
equation in LIEPDE.TST demonstrates that the number of symmetries for a given maximal
order of the infinitesimal generators depends on the derivative chosen for the LHS.

The second parameter symtype of LIEPDE is a list { } that specifies the symmetry to be
calculated. symtype can have the following values and meanings:

{"point"} Point symmetries with £ = £4(27, u”), n® = n®(2?, u’) are
determined.
{"contact"} Contact symmetries with £ = 0, n = n(z’,u, u) are

determined (uy = du/dx*), which is only applicable if a
single equation (1) with an order > 1 for a single function
u is to be investigated. (The symtype {"contact"}
is equivalent to {"general",1} (see below) apart from
the additional checks done for {"contact"}.)
{"general",order} where order is an integer > 0. Generalized symmetries £’ = 0,

n* =n(z7,uP, . .. ,u%) of a specified order are determined
(where g is a multiple index representing order many indices.)
NOTE: Characteristic functions of generalized symmetries
(= n>if £ = 0) are equivalent if they are equal on
the solution manifold. Therefore, all dependences of
characteristic functions on the substituted derivatives
and their derivatives are dropped. For example, if the heat
equation is given as u; = Uy, (i.e. u; is substituted by u,,)
then {"general",2} would not include characteristic
functions depending on s, Or Ugys.
THEREFORE:
If you want to find all symmetries up to a given order then either
- avoid using H4 = 0 to substitute lower order

derivatives by expressions involving higher derivatives, or

6

- increase the order specified in symtype.
For an illustration of this effect see the two symmetry
determinations of the Burgers equation in the file
LIEPDE.TST.
{xit a1 =...,...,
eta!_ul=...,...} It is possible to specify an ansatz for the symmetry. Such
an ansatz must specify all £ for all independent variables and
all n* for all dependent variables in terms of differential
expressions which may involve unknown functions/constants.
The dependences of the unknown functions have to be declared
in advance by using the DEPEND command. For example,
DEPEND f, t, x, u$
specifies f to be a function of ¢, z,u. If one wants to have f as
a function of derivatives of u(t,z), say f depending on ..,
then one cannot write
DEPEND f, df(u,t,x,2)$
but instead must write
DEPEND f, u!‘1!¢2!‘2$
assuming zlist has been specified as {t,x}. Because t is the
first variable and x is the second variable in zlist and u is
differentiated oncs wrt. ¢ and twice wrt. = we therefore
use u! ‘11212, The character ! is the escape character
to allow special characters like ¢ to occur in an identifier.
For generalized symmetries one usually sets all £ = 0.
Then the n® are equal to the characteristic functions.

The third parameter flist of LIEPDE is a list { } that includes

e all parameters and functions in the equations which are to be determined such that
symmetries exist (if any such parameters/functions are specified in flist then the symmetry
conditions formulated in LIEPDE become non-linear conditions which may be much harder
for CRACK to solve with many cases and subcases to be considered.)

e all unknown functions and constants in the ansatz xi!_.. and eta!_.. if that has been
specified in symtype.

The fourth parameter inequ of LIEPDE is a list { } that includes all non-vanishing expressions
which represent inequalities for the functions in flist.
The result of LIEPDE is a list with 3 elements, each of which is a list:

{{cony, cong,.. .}, {xi_ . =...,...;eta =... ...} {flist}}.

The first list contains remaining unsolved symmetry conditions con;. It is the empty list {} if
all conditions have been solved. The second list gives the symmetry generators, i.e. expressions
for & and n;. The last list contains all free constants and functions occuring in the first and
second list.

1.3 The third step: Application of infinitesimal symmetries

If infinitesimal symmetries have been found then the program APPLYSYM can use them for the
following purposes:

1. Calculation of one symmetry variable and further similarity variables. After transforming
the DE(-system) to these variables, the symmetry variable will not occur explicitly any
more. For ODEs this has the consequence that their order has effectively been reduced.

2. Generalization of a special solution by one or more constants of integration.

Both methods are described in the following section.

2 Applying symmetries with APPLYSYM

2.1 The first mode: Calculation of similarity and symmetry vari-
ables

In the following we assume that a symmetry generator X, given in (5), is known such that

ODE(s)/PDE(s) H4 = 0 satisfy the symmetry condition (4). The aim is to find new dependent

functions u® = u®(2?,y”) and new independent variables v' = v(27,¢y"), 1 <a,83<p, 1<

i,j < ¢ such that the symmetry generator X = &' (27, 4y%)0,: + n®(2?,y%)d,e transforms to

X =0,. (6)

Inverting the above transformation to 2 = 2¢(v?, u?), y* = y*(v7,u®) and setting
Ha(z' (v, uP), y*(v7,uP),...) = ha(v?, v, . ..) this means that
0 = XHA(wi,ya,yf,...) mod Hy =0
XhA(v",ua,uf,...) mod hy =0
= 3v1hA(vi,ua,uf,...) mod hy = 0.

Consequently, the variable v! does not occur explicitly in h. In the case of an ODE(-system)
(v! = v) the new equations 0 = hu(v,u®, du’/dv,...) are then of lower total order after the

8

2 ..uP as unknown functions and u' as

transformation z = z(u') = du'/dv with now z,u
independent variable.
The new form (6) of X leads directly to conditions for the symmetry variable v! and the

similarity variables v|; .1, u® (all functions of z*, y):

Xol =1 = &(a"y")00" +n°(a*,y7)dye0! (7)
Xv'jpr = Xu =0 = &(a*, g0’ + 1@, y")dyeu” (8)

The general solutions of (7), (8) involve free functions of p+ g — 1 arguments. From the general
solution of equation (8), p+ ¢ — 1 functionally independent special solutions have to be selected
(v?,...,vP and u!',... u9), whereas from (7) only one solution v' is needed. Together, the
expressions for the symmetry and similarity variables must define a non-singular transformation
T,Y — U, V.

Different special solutions selected at this stage will result in different resulting DEs which
are equivalent under point transformations but may look quite differently. A transformation
that is more difficult than another one will in general only complicate the new DE(s) compared
with the simpler transformation. We therefore seek the simplest possible special solutions of
(7), (8). They also have to be simple because the transformation has to be inverted to solve
for the old variables in order to do the transformations.

The following steps are performed in the corresponding mode of the program APPLYSYM:

e The user is asked to specify a symmetry by selecting one symmetry from all the known
symmetries or by specifying a linear combination of them.

e Through a call of the procedure QUASILINPDE (described in a later section) the two linear
first order PDEs (7), (8) are investigated and, if possible, solved.

e From the general solution of (7) 1 special solution is selected and from (8) p+ ¢ —1 special
solutions are selected which should be as simple as possible.

e The user is asked whether the symmetry variable should be one of the independent vari-
ables (as it has been assumed so far) or one of the new functions (then only derivatives
of this function and not the function itself turn up in the new DE(s)).

e Through a call of the procedure DETRAFQ the transformation x¢, y* — v7, u” of the DE(s)
H,4 =0 is finally done.

e The program returns to the starting menu.

2.2 The second mode: Generalization of special solutions

A second application of infinitesimal symmetries is the generalization of a known special solution
given in implicit form through 0 = F(z¢, y®). If one knows a symmetry variable v! and similarity
variables v",u®, 2 <7 < p then v' can be shifted by a constant ¢ because of 9,1 H4 = 0 and
therefore the DEs 0 = H4(v", u®, uf ,...) are unaffected by the shift. Hence from

0= F(z',y*) = F(a'(v!,u?), y* (v, u?)) = F(v?,u?)

follows that
0=F@' +c, 0", uf) = F(ol(a',y%) 4 ¢, 0" (2, y*), v’ (27, y*))
defines implicitly a generalized solution y® = y*(z*, c).
This generalization works only if 9,1 F # 0 and if F does not already have a constant
additive to v
The method above needs to know x' = 2¢(u®,v7), y* = y*(u®,v7) and u® = u®(a?, y?),v* =
v*(z7,y") which may be practically impossible. Better is, to integrate 2%, y® along X:

dzt
de

" _

={(@(0),9°¢), - =n"@(©),57() (9)

with initial values z° = 2, j* = y* for € = 0. (This ODE-system is the characteristic system of

(8).)

Knowing only the finite transformations

(0}

- ga(ajjayﬁag) (10)

(67

ji = fi(xjayﬁaf':% Y

gives immediately the inverse transformation z' = zi(27,y% ¢), 3 = y%(27,y” ¢) just by
¢ — —¢ and renaming z°, y® « T°, §°.

The special solution 0 = F'(x?, y®) is generalized by the new constant e through
0=F(a',y") = Fla'(@, 57, €), y* (27,57, ¢))

after dropping the ~.
The steps performed in the corresponding mode of the program APPLYSYM show features of
both techniques:

e The user is asked to specify a symmetry by selecting one symmetry from all the known
symmetries or by specifying a linear combination of them.

e The special solution to be generalized and the name of the new constant have to be put
in.

10

e Through a call of the procedure QUASILINPDE, the PDE (7) is solved which amounts to
a solution of its characteristic ODE system (9) where v! = ¢.

e QUASILINPDE returns a list of constant expressions

ci=ci(z 9y e), 1<i<p+q (11)

which are solved for z/ = 27(c;,e), y* = y*(c;,€) to obtain the generalized solution
through

0= F(2/,y*) = F(a (e (", 97,0),€), 4% (ei(*, 47, 0), €)).
e The new solution is availabe for further generalizations w.r.t. other symmetries.

If one would like to generalize a given special solution with m new constants because m sym-
metries are known, then one could run the whole program m times, each time with a different
symmetry or one could run the program once with a linear combination of m symmetry gener-
ators which again is a symmetry generator. Running the program once adds one constant but
we have in addition m — 1 arbitrary constants in the linear combination of the symmetries, so
m new constants are added. Usually one will generalize the solution gradually to make solving
(9) gradually more difficult.

2.3 Syntax
The call of APPLYSYM is APPLYSYM({de, fun, var}, {sym, cons});

e de is a single DE or a list of DEs in the form of a vanishing expression or in the form

e fun is the single function or the list of functions occuring in de.
e varis the single variable or the list of variables in de.

e sym is a linear combination of all symmetries, each with a different constant coefficient, in
form of a list of the & and n®: {xi_...=...,....eta_...=...,...}, where the indices after
‘xi_” are the variable names and after ‘eta_’ the function names.

e cons is the list of constants in sym, one constant for each symmetry.

The list that is the first argument of APPLYSYM is the same as the first argument of LIEPDE
and the second argument is the list that LIEPDE returns without its first element (the unsolved
conditions). An example is given below.

11

What APPLYSYM returns depends on the last performed modus. After modus 1 the return is

{{newde, newfun, newvar}, trafo}
where

newde lists the transformed equation(s)

newfun lists the new function name(s)

e newvar lists the new variable name(s)

trafo lists the transformations 2 = 2%(v?, u?), y* = y®(v7, u”)

After modus 2, APPLYSYM returns the generalized special solution.

2.4 Example: A second order ODE

Weyl’s class of solutions of Einsteins field equations consists of axialsymmetric time independent

metrics of the form
ds? — ¢~ 2U {6% (dpQ +d22) +,02d902] _ €2Udt2’

(12)

where U and k are functions of p and z. If one is interested in generalizing these solutions to
have a time dependence then the resulting DEs can be transformed such that one longer third
order ODE for U results which contains only p derivatives [23]. Because U appears not alone

but only as derivative, a substitution
g=dU/dp

lowers the order and the introduction of a function
h=pg—1

simplifies the ODE to

0=3p*hh" —5p° W2 +5phh —20ph3h — 20 h* + 16 h® + 4 K2

where ' = d/dp. Calling LIEPDE through

depend h,r;

prob:={{-20*%h**4+16*h**6+3*r**2xh*df (h,r,2) +5*r*h*df (h,r)
-20*h**3*r*df (h,r) +4*xh**2-5xr*x*2*df (h,r) **2},
{h}, {r}};

sym:=liepde(prob, {"point"},{},{});

end;

12

(13)

(14)

(15)

gives

3 2
sym := {{}, {xi_r= - clO*r - clixr, eta_h=clO*h*r }, {c10,c11}}.

All conditions have been solved because the first element of sym is {}. The two existing
symmetries are therefore
—p*0, + hp*0, and po,. (16)

Corresponding finite transformations can be calculated with APPLYSYM through
newde:=applysym(prob,rest sym);

The interactive session is given below with the user input following the prompt ‘Input:3:’ or
following ‘?’. (Empty lines have been deleted.)

Do you want to find similarity and symmetry variables (enter ‘1;’)
or generalize a special solution with new parameters (enter ‘2;’)
or exit the program (enter ¢;?)
Input:3: 1;

We enter ‘1;” because we want to reduce dependencies by finding similarity variables and one
symmetry variable and then doing the transformation such that the symmetry variable does
not explicitly occur in the DE.

—————————————————————— The 1. symmetry is:

3
Xi_r=-r
2
eta_h=hx*r
—————————————————————— The 2. symmetry is:
Xi_r=-r

Which single symmetry or linear combination of symmetries
do you want to apply?

Enter an expression with ‘sy_(i)’ for the i’th symmetry.
sy_(1);

We could have entered ‘sy_(2);” or a combination of both as well with the calculation running
then differently.

13

The symmetry to be applied in the following is
3 2

{xi_r= - r ,eta_h=hx*r }

Enter the name of the new dependent variables:

Input:3: u;

Enter the name of the new independent variables:

Input:3: v;

This was the input part, now the real calculation starts.

The ODE/PDE (-system) under investigation is
2 2 2 3
0 = 3%df (h,r,2)*h*r - b5*df(h,r) *r - 20*df(h,r)*h *r
6 4 2
+ 5%df (h,r)*h*r + 16%xh - 20%h + 4%h
for the function(s) : h.
It will be looked for a new dependent variable u
and an independent variable v such that the transformed
de(-system) does not depend on u or v.
1. Determination of the similarity variable
2
The quasilinear PDE: 0 = r *(df(u_,h)*h - df (u_,r)*r).
The equivalent characteristic system:
3
- df (u_,r)*r
2
0= - r *(df (h,r)*r + h)
for the functioms: h(r) u_(r).

The PDE is equation (8).

0

The general solution of the PDE is given through
0 = ff(u_,h*r)

with arbitrary function ff(..).

A suggestion for this function ff provides:

0= - h*xr + u_

Do you like this choice? (Y or N)
?

Y

For the following calculation only a single special solution of the PDE is necessary and this has
to be specified from the general solution by choosing a special function £f. (This function is
called £f to prevent a clash with names of user variables/functions.) In principle any choice

14

of £f would work, if it defines a non-singular coordinate transformation, i.e. here » must be
a function of u_. If we have ¢ independent variables and p functions of them then ff has
p + q arguments. Because of the condition 0 =ff one has essentially the freedom of choosing a
function of p+ ¢ — 1 arguments freely. This freedom is also necessary to select p+ ¢ — 1 different
functions £f and to find as many functionally independent solutions w_ which all become the
new similarity variables. ¢ of them become the new functions u® and p — 1 of them the new
variables v?, ..., vP. Here we have p = ¢ = 1 (one single ODE).

Though the program could have done that alone, once the general solution ££ (. .) is known,
the user can interfere here to enter a simpler solution, if possible.

2. Determination of the symmetry variable
2 3

The quasilinear PDE: 0 = df(u_,h)*h*r - df(u_,r)*r - 1.
The equivalent characteristic system:

3
0=df(r,u_) + r

2

0=df (h,u_) - h*r
for the functions: r(u.) h(u.)
New attempt with a different independent variable
The equivalent characteristic system:

2
0=df (u_,h)*h*xr - 1

2
O=r *(df(r,h)*h + r)
for the functions: r(h) u_(h)
The general solution of the PDE is given through
2 2 2

- 2%h *r *u_ + h

0 = ff(h*r,-——————————————————-)

with arbitrary function ff(..).
A suggestion for this function ff(..) yields:
2 2
h *(- 2%r *u_ + 1)

0 = ————mmmm
2

Do you like this choice? (Y or N)

?

Y

Similar to above.

15

The suggested solution of the algebraic system which will
do the transformation is:

sqrt (v)*sqrt (2)
{h=sqrt (v) *sqrt(2) *u,r=----------—------- }

Is the solution ok? (Y or N)

7y

In the intended transformation shown above the dependent

variable is u and the independent variable is v.

The symmetry variable is v, i.e. the transformed expression

will be free of v.

Is this selection of dependent and independent variables ok? (Y or N)
7n

We so far assumed that the symmetry variable is one of the new variables, but, of course we also
could choose it to be one of the new functions. If it is one of the functions then only derivatives
of this function occur in the new DE, not the function itself. If it is one of the variables then
this variable will not occur explicitly.

In our case we prefer (without strong reason) to have the function as symmetry variable.
We therefore answered with ‘no’. As a consequence, u and v will exchange names such that
still all new functions have the name u and the new variables have name v:

Please enter a list of substitutions. For example, to
make the variable, which is so far call ul, to an
independent variable v2 and the variable, which is

so far called v2, to an dependent variable ul,

enter: ‘{ul=v2, v2=ul};’

Input:3: {u=v,v=u};

The transformed equation which should be free of u:

3 6 2 3
0=3*%df (u,v,2)*v - 16xdf(u,v) *v - 20xdf(u,v) *v + 5*df(u,v)
Do you want to find similarity and symmetry variables (enter ‘1;’)
or generalize a special solution with new parameters (enter ‘2;’)
or exit the program (enter ¢;7)
Input:3: ;

We stop here. The following is returned from our APPLYSYM call:
3 6 2 3
{{{3*df (u,v,2)*v - 16*df(u,v) *v - 20%df(u,v) *v + 5*df (u,v)},

16

{u},
{v}},
sqrt (u) *sqrt (2)
{r=———--—— , h=sqrt(u)*sqrt(2)*v }}

The use of APPLYSYM effectively provided us the finite transformation
p=02u) 1 h=(2u)"?v. (17)

and the new ODE
0 = 3u"v — 16u"v° — 20u*v” + 5u (18)

where u = u(v) and ' = d/dv. Using one symmetry we reduced the 2. order ODE (15) to a first
order ODE (18) for ' plus one integration. The second symmetry can be used to reduce the
remaining ODE to an integration too by introducing a variable w through v*d/dv = d/dw, i.e.
w = —1/(20v%). With

p = du/dw (19)
the remaining ODE is
dp
0=3w—+2 1)(4 1
wo—+2p(p+1)dp+1)
with solution , .
w24 = ot = w, ¢ = const.
(4p+1)

Writing (19) as p = v*(du/dp)/(dv/dp) we get u by integration and with (17) further a para-
metric solution for p, h:

3ci(2p — 1) —1/2
a <]ol/2’(zo+1)l/2 to (20)
o (P2 (p+ 1)Y2 + Geip — 3c})2p!/? o
c(dp+ 1)

where ¢;, ¢o = const. and ¢; = ¢/*. Finally, the metric function U (p) is obtained as an integral
from (13),(14).

2.5 Limitations of APPLYSYM

Restrictions of the applicability of the program APPLYSYM result from limitations of the program
QUASILINPDE described in a section below. Essentially this means that symmetry generators

17

may only be polynomially non-linear in ¢, y®. Though even then the solvability can not be
guaranteed, the generators of Lie-symmetries are mostly very simple such that the resulting
PDE (22) and the corresponding characteristic ODE-system have good chances to be solvable.

Apart from these limitations implied through the solution of differential equations with
CRACK and algebraic equations with SOLVE the program APPLYSYM itself is free of restrictions,
i.e. if once new versions of CRACK, SOLVE would be available then APPLYSYM would not have to
be changed.

Currently, whenever a computational step could not be performed the user is informed and
has the possibility of entering interactively the solution of the unsolved algebraic system or the
unsolved linear PDE.

3 Solving quasilinear PDEs

3.1 The content of QUASILINPDE

The generalization of special solutions of DEs as well as the computation of similarity and
symmetry variables involve the general solution of single first order linear PDEs. The procedure
QUASILINPDE is a general procedure aiming at the general solution of PDEs

a1 (Wi, @) Puy + a2(Wis @)Puy + - - - + an(Wi, @) Puy, = b(w;, P) (22)
in n independent variables w;,i = 1...n for one unknown function ¢ = ¢(w;).

1. The first step in solving a quasilinear PDE (22) is the formulation of the corresponding
characteristic ODE-system

dwi

de = ai(wja ¢) (23)
do B '

= - b(wy, ¢) (24)

for ¢, w; regarded now as functions of one variable e.

Because the a; and b do not depend explicitly on e, one of the equations (23),(24) with
non-vanishing right hand side can be used to divide all others through it and by that
having a system with one less ODE to solve. If the equation to divide through is one of
(23) then the remaining system would be

dwi a;

= =1,2,...k—1,k+1,... 2
dwk ak:? ?)’ = 7 —"_7 n (5)
do b

- 26
dwk Qe ()

18

with the independent variable wy, instead of €. If instead we divide through equation (24)
then the remaining system would be
dwi . a;

= L i=1,2,... 2
d¢ b? 1 = n (7)

with the independent variable ¢ instead of €.

The equation to divide through is chosen by a subroutine with a heuristic to find the
“simplest” non-zero right hand side (ax or b), i.e. one which

e is constant or
e depends only on one variable or

e is a product of factors, each of which depends only on one variable.

One purpose of this division is to reduce the number of ODEs by one. Secondly, the
general solution of (23), (24) involves an additive constant to € which is not relevant and
would have to be set to zero. By dividing through one ODE we eliminate £ and lose the
problem of identifying this constant in the general solution before we would have to set
it to zero.

. To solve the system (25), (26) or (27), the procedure CRACK is called. Although being
designed primarily for the solution of overdetermined PDE-systems, CRACK can also be
used to solve simple not overdetermined ODE-systems. This solution process is not
completely algorithmic. Improved versions of CRACK could be used, without making any
changes of QUASILINPDE necessary.

If the characteristic ODE-system can not be solved in the form (25), (26) or (27) then
successively all other ODEs of (23), (24) with non-vanishing right hand side are used for
division until one is found such that the resulting ODE-system can be solved completely.
Otherwise the PDE can not be solved by QUASILINPDE.

. If the characteristic ODE-system (23), (24) has been integrated completely and in full
generality to the implicit solution

0=Gi(¢,wj,cp,e), i,k=1,...,n+1, j=1,...,n (28)

then according to the general theory for solving first order PDEs, € has to be eliminated
from one of the equations and to be substituted in the others to have left n equations.
Also the constant that turns up additively to € is to be set to zero. Both tasks are

19

automatically fulfilled, if, as described above, ¢ is already eliminated from the beginning
by dividing all equations of (23), (24) through one of them.

On either way one ends up with n equations
0=gi(p,w;,cx), t,5,k=1...n (29)

involving n constants c.

The final step is to solve (29) for the ¢; to obtain
¢ =ci(p,wy,...,w,) i=1,...n. (30)
The final solution ¢ = ¢(w;) of the PDE (22) is then given implicitly through
0= F(c1(o,w;), ca(p,w;), ..., cn(d,w;))

where F'is an arbitrary function with n arguments.

3.2 Syntax

The call of QUASILINPDE is
QUASILINPDE(de, fun, varlist);

e de is the differential expression which vanishes due to the PDE de = 0 or, de may be the
differential equation itself in the form ...=... .

e fun is the unknown function.
e warlist is the list of variables of fun.
The result of QUASILINPDE is a list of general solutions
{s0ly, soly, ...}.

If QUASILINPDE can not solve the PDE then it returns {}. Each solution sol; is a list of
expressions
{exy, exs, ...}

such that the dependent function (¢ in (22)) is determined implicitly through an arbitrary
function F' and the algebraic equation

0= F(exy,exs,...).

20

3.3 Examples

Ezxample 1:
To solve the quasilinear first order PDE

1 = 2u,, tuu,y —zu,,
for the function u = u(x,y, z), the input would be

depend u,x,y,Z;

de:=xxdf (u,x)+u*df (u,y)-z*xdf (u,z) - 1;
varlist:={x,y,z};
QUASILINPDE(de,u,varlist);

In this example the procedure returns
{{z/e", ze" u® — 2y} },

i.e. there is one general solution (because the outer list has only one element which itself is a
list) and w is given implicitly through the algebraic equation

0= F(x/e", ze*, u* — 2y)

with arbitrary function F.
Example 2:
For the linear inhomogeneous PDE

0=yz,,+zz,,—1, for z=z(zy)
QUASILINPDE returns the result that for an arbitrary function F, the equation

0= F(I; ,ez(x—y))

defines the general solution for z.
Example 3:
For the linear inhomogeneous PDE (3.8) from [15]

0=2w,+({y+2)(w, —w,,), for w=wx,y,z2)
QUASILINPDE returns the result that for an arbitrary function F, the equation
0=F(w, y+ 2z In(x)(y +2) —y)
defines the general solution for w, i.e. for any function f
w=f(y+z In(@)(y+2)—y)
solves the PDE.

21

3.4 Limitations of QUASILINPDE

One restriction on the applicability of QUASILINPDE results from the program CRACK which
tries to solve the characteristic ODE-system of the PDE. So far CRACK can be applied only to
polynomially non-linear DE’s, i.e. the characteristic ODE-system (25),(26) or (27) may only be
polynomially non-linear, i.e. in the PDE (22) the expressions a; and b may only be rational in
wy, QZS

The task of CRACK is simplified as (28) does not have to be solved for w;, ¢. On the other
hand (28) has to be solved for the ¢;. This gives a second restriction coming from the REDUCE
function SOLVE. Though SOLVE can be applied to polynomial and transzendential equations,
again no guarantee for solvability can be given.

4 Transformation of DEs

4.1 The content of DETRAFO

Finally, after having found the finite transformations, the program APPLYSYM calls the procedure
DETRAFO to perform the transformations. DETRAFQ can also be used alone to do point- or higher
order transformations which involve a considerable computational effort if the differential order
of the expression to be transformed is high and if many dependent and independent variables
are involved. This might be especially useful if one wants to experiment and try out different
coordinate transformations interactively, using DETRAFO as standalone procedure.

To run DETRAFO, the old functions y® and old variables 2 must be known explicitly in terms
of algebraic or differential expressions of the new functions «” and new variables v7. Then for
point transformations the identity

dy* = (v 9% v’) d’ (31)
= Y% dr’ (32)
= yaaxj (‘/iji +xjauﬁ uﬂwi) dvi (33)
provides the transformation
N A
Y sz = doi \ dui (34)

with det(da? /dv') # 0 because of the regularity of the transformation which is checked by
DETRAF0. Non-regular transformations are not performed.

DETRAFO is not restricted to point transformations. In the case of contact- or higher order
transformations, the total derivatives dy®/dv’ and dz’ /dv® then only include all v’— derivatives

22

of u? which occur in

y* o= gt)
" 2F (v ul uP)
4.2 Syntax
The call of DETRAFO is
DETRAFO({ ez, exy, ..., €Ly},
{ofuny =fex,, ofuny =fexs, ... ofun, =fex,},
{ovar, =vex,, ovary =vexy, ..., ovar, =vez,},
{nfuny, nfuny, ..., nfun,},
{nvary, nvary, ..., nvar,});

where m, p, ¢ are arbitrary.
e The ex; are differential expressions to be transformed.

e The second list is the list of old functions ofun expressed as expressions fer in terms of
new functions nfun and new independent variables nvar.

e Similarly the third list expresses the old independent variables ovar as expressions vez in
terms of new functions nfun and new independent variables nwvar.

e The last two lists include the new functions nfun and new independent variables nvar.

Names for ofun, ovar, nfun and nvar can be arbitrarily chosen.
As the result DETRAFO returns the first argument of its input, i.e. the list

{exy, exa, ..., ez}

where all ex; are transformed.

4.3 Limitations of DETRAFO

The only requirement is that the old independent variables z° and old functions y® must be
given explicitly in terms of new variables v/ and new functions u” as indicated in the syntax.
Then all calculations involve only differentiations and basic algebra.

23

5]

Availability

The programs run under REDUCE 3.6 and are available by anonymous ftp from
ftp.maths.qgmw.ac.uk, directory pub/tw.

References

[1] W.Hereman, Chapter 13 in vol 3 of the CRC Handbook of Lie Group Analysis of Differ-

2]

3]

ential Equations, Ed.: N.H. Ibragimov, CRC Press, Boca Raton, Florida (1995). Systems
described in this paper are among others:

DELiA (Alexei Bocharov et.al.) Pascal

DIFFGROB2 (Liz Mansfield) Maple

DIMSYM (James Sherring and Geoff Prince) REDUCE

HSYM (Vladimir Gerdt) Reduce

LIE (V. Eliseev, R.N. Fedorova and V.V. Kornyak) Reduce

LIE (Alan Head) muMath

Lie (Gerd Baumann) Mathematica

LIEDF/INFSYM (Peter Gragert and Paul Kersten) Reduce

Liesymm (John Carminati, John Devitt and Greg Fee) Maple

MathSym (Scott Herod) Mathematica

NUSY (Clara Nucci) Reduce

PDELIE (Peter Vafeades) Macsyma

SPDE (Fritz Schwarz) Reduce and Axiom

SYM_DE (Stanly Steinberg) Macsyma

Symmgroup.c (Dominique Berube and Marc de Montigny) Mathematica
STANDARD FORM (Gregory Reid and Alan Wittkopf) Maple
SYMCAL (Gregory Reid) Macsyma and Maple

SYMMGRP.MAX (Benoit Champagne, Willy Hereman and Pavel Winternitz) Macsyma
LIE package (Khai Vu) Maple

Toolbox for symmetries (Mark Hickman) Maple

Lie symmetries (Jeffrey Ondich and Nick Coult) Mathematica.

S. Lie, Sophus Lie’s 1880 Transformation Group Paper, Translated by M. Ackerman,
comments by R. Hermann, Mathematical Sciences Press, Brookline, (1975).

S. Lie, Differentialgleichungen, Chelsea Publishing Company, New York, (1967).

24

[4]

[5]
(6]
7]
8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Wolf, An efficiency improved program LIEPDE for determining Lie - symmetries of
PDEs, Proceedings of the workshop on Modern group theory methods in Acireale (Sicily)
Nov. (1992)

C. Riquier, Les systemes d’équations aux dérivées partielles, Gauthier—Villars, Paris (1910).
J. Thomas, Differential Systems, AMS, Colloquium publications, v.21, N.Y. (1937).
M. Janet, Legons sur les systemes d’équations aux dérivées, Gauthier—Villars, Paris (1929).

V.L. Topunov, Reducing Systems of Linear Differential Equations to a Passive Form, Acta
Appl. Math. 16 (1989) 191-206.

A.V.Bocharov and M.L. Bronstein, Efficiently Implementing Two Methods of the Geomet-
rical Theory of Differential Equations: An Experience in Algorithm and Software Design,
Acta. Appl. Math. 16 (1989) 143-166.

P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag New York
(1986).

G.J.Reid, A triangularization algorithm which determines the Lie symmetry algebra of
any system of PDEs, J.Phys. A: Math. Gen. 23 (1990) L853-1859.

F.Schwarz, Automatically Determining Symmetries of Partial Differential Equations,
Computing 34, (1985) 91-106.

W.I. Fushchich and V.V. Kornyak, Computer Algebra Application for Determining Lie and
Lie-Bécklund Symmetries of Differential Equations, J. Symb. Comp. 7 (1989) 611-619.

E. Kamke, Differentialgleichungen, Losungsmethoden und Losungen, Band 1, Gewohnliche
Differentialgleichungen, Chelsea Publishing Company, New York, 1959.

E. Kamke, Differentialgleichungen, Losungsmethoden und Losungen, Band 2, Partielle Dif-
ferentialgleichungen, 6.Aufl., Teubner, Stuttgart:Teubner, 1979.

T. Wolf, An Analytic Algorithm for Decoupling and Integrating systems of Nonlinear Par-
tial Differential Equations, J. Comp. Phys., no. 3, 60 (1985) 437-446 and, Zur analytischen
Untersuchung und exakten Losung von Differentialgleichungen mit Computeralgebrasys-
temen, Dissertation B, Jena (1989).

25

[17] T.Wolf, A. Brand, The Computer Algebra Package CRACK for Investigating PDEs, Manual
for the package CRACK in the REDUCE network library and in Proceedings of ERCIM
School on Partial Differential Equations and Group Theory, April 1992 in Bonn, GMD
Bonn.

[18] M.A.H. MacCallum, F.J. Wright, Algebraic Computing with REDUCE, Clarendon Press,
Oxford (1991).

[19] M.A.H. MacCallum, An Ordinary Differential Equation Solver for REDUCE, Proc.
ISAAC’88, Springer Lect. Notes in Comp Sci. 358, 196-205.

[20] H. Stephani, Differential equations, Their solution using symmetries, Cambridge University
Press (1989).

[21] V.I. Karpman, Phys. Lett. A 136, 216 (1989)

[22] B.Champagne, W. Hereman and P. Winternitz, The computer calculation of Lie point sym-
metries of large systems of differential equations, Comp. Phys. Comm. 66, 319-340 (1991)

[23] M. Kubitza, private communication

26

