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1 Introduction

This package contains algorithms for computations in commutative algebra closely related
to the Gröbner algorithm for ideals and modules. Its heart is a new implementation of the
Gröbner algorithm1 that allows the computation of syzygies, too. This implementation
is also applicable to submodules of free modules with generators represented as rows of a
matrix.

Moreover CALI contains facilities for local computations, using a modern implemen-
tation of Mora’s standard basis algorithm, see [26] and [13], that works for arbitrary term
orders. The full analogy between modules over the local ring k[xv : v ∈ H]m and ho-
mogeneous (in fact H-local) modules over k[xv : v ∈ H] is reflected through the switch
Noetherian. Turn it on (Gröbner basis, the default) or off (local standard basis) to choose
appropriate algorithms automatically. In v. 2.2 we present an unified approach to both
cases, using reduction with bounded ecart for non Noetherian term orders, see [14] for
details. This allows to have a common driver for the Gröbner algorithm in both cases.

CALI extends also the restricted term order facilities of the groebner package, defining
term orders by degree vector lists, and the rigid implementation of the sugar idea, by a
more flexible ecart vector, in particular useful for local computations, see [13].

The package was designed mainly as a symbolic mode programming environment ex-
tending the build-in facilities of REDUCE for the computational approach to problems
arising naturally in commutative algebra. An algebraic mode interface accesses (in a more
rigid frame) all important features implemented symbolically and thus should be favored
for short sample computations.

On the other hand, tedious computations are strongly recommended to be done sym-
bolically since this allows considerably more flexibility and avoids unnecessary translations
of intermediate results from CALI’s internal data representation to the algebraic mode and
vice versa. Moreover, one can easily extend the package with new symbolic mode scripts,
or do more difficult interactive computations. For all these purposes the symbolic mode
interface offers substantially more facilities than the algebraic one.

For a detailed description of special symbolic mode procedures one should consult
the source code and the comments therein. In this manual we can give only a brief
description of the main ideas incorporated into the package CALI. We concentrate on the
data structure design and the description of the more advanced algorithms. For sample
computations from several fields of commutative algebra the reader may consult also the
cali.tst file.

As main topics CALI contains facilities for

• defining rings, ideals and modules,

• computing Gröbner bases and local standard bases,

• computing syzygies, resolutions and (graded) Betti numbers,
1The data representation even for polynomials is different from that given in the groebner package

distributed with REDUCE (and rests on ideas used in the dipoly package).
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• computing (now also weighted) Hilbert series, multiplicities, independent sets, and
dimensions,

• computing normal forms and representations,

• computing sums, products, intersections, quotients, stable quotients, elimination
ideals etc.,

• primality tests, computation of radicals, unmixed radicals, equidimensional parts,
primary decompositions etc. of ideals and modules,

• advanced applications of Gröbner bases (blowup, associated graded ring, analytic
spread, symmetric algebra, monomial curves etc.),

• applications of linear algebra techniques to zero dimensional ideals, as e.g. the FGLM
change of term orders, border bases and affine and projective ideals of sets of points,

• splitting polynomial systems of equations mixing factorization and the Gröbner algo-
rithm, triangular systems, and different versions of the extended Gröbner factorizer.

Below we will use freely without further explanation the notions common for text books
and papers about constructive commutative algebra, assuming the reader to be familiar
with the corresponding ideas and concepts. For further references see e.g. the text books
[2], [7] and [21] or the survey papers [5], [6] and [27].

1.1 Description of the Documents Distributed with CALI

The CALI package contains the following files:

cali.chg

a detailed report of changes from v. 2.1 to v. 2.2. and 2.2.1

cali.log

the output file, that cali.tst should produce with

load package cali;

out "logfile"$

in "cali.tst";

shut "logfile"$

cali.red

the CALI source file.

cali.tex

this manual.

cali.tst

a test file with various examples and applications of CALI.
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CALI should be precompiled as usual, i.e. either using the makefasl utility of REDUCE
or “by hand” via

faslout "cali"$
in "cali.red"$
faslend$

and then loaded via

load_package cali;

Upon successful loading CALI responds with a message containing the version number
and the last update of the distribution.

Feel free to contact me by email if You have problems to get CALI
started. Also comments, hints, bug reports etc. are welcome.

1.2 CALI’s Language Concept

From a certain point of view one of the major disadvantage of the current RLISP (and the
underlying PSL) language is the fact that it supports modularity and data encapsulation
only in a rudimentary way. Since all parts of code loaded into a session are visible all the
time, name conflicts between different packages may occur, will occur (even not issuing
a warning message), and are hard to prevent, since packages are developed (and are still
developing) by different research groups at different places and different time.

A (yet rudimentary) concept of REDUCE packages and modules indicates the direction
into what the REDUCE designers are looking for a solution for this general problem.

CALI (2.0 and higher) follows a name concept for internal procedures to mimick data
encapsulation at a semantical level. We hope this way on the one hand to resolve the
conflicts described above at least for the internal part of CALI and on the other hand to
anticipate a desirable future and already foregoing development of REDUCE towards a
true modularity.

The package CALI is divided into several modules, each of them introducing either
a single new data type together with basic facilities, constructors, and selectors or a
collection of algorithms subject to a common problem. Each module contains internal
procedures, conceptually hidden by this module, local procedures, designed for a CALI
wide use, and global procedures, exported by CALI into the general (algebraic or symbolic)
environment of REDUCE. A header module cali contains all (fluid) global variables and
switches defined by the pacakge CALI.

Along these lines the CALI procedures available in symbolic mode are divided into
three types with the following naming convention:

module!=procedure

internal to the given module.
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module_procedure

exported by the given module into the local CALI environment.

procedure!*

a global procedure usually having a semantically equivalent procedure
(possibly with another parameter list) without trailing asterisk in alge-
braic mode.

There are also symbolic mode equivalents without trailing asterisk, if the algebraic pro-
cedure is not a psopfn, but a symbolic operator. They transfer data to CALI’s internal
structure and call the corresponding procedure with trailing asterisk. CALI 2.2 distin-
guishes between algebraic and symbolic calls of such a procedure. In symbolic mode such
a procedure calls the corresponding procedure with trailing asterisk directly without data
transfer.

CALI 2.2 follows also a more concise concept for global variables. There are three
types of them:

True fluid global variables,

that are part of the current data structure, as e.g. the current base ring
and the degree vector. They are often locally rebound to be restored
after interrupts.

Global variables, stored on the property list of the package name cali,

that reflect the state of the computational model as e.g. the trace level,
the output print level or the chosen version of the Gröbner basis al-
gorithm. There are several such parameters in the module dualbases
to serve the common dual basis driver with information for different
applications.

Switches,

that allow to choose different branches of algorithms. Note that this
concept interferes with the second one. Different versions of algorithms,
that apply different functions in a common driver, are not implemented
through switches.

1.3 New and Improved Facilities in v. 2.1

The major changes in v. 2.1 reflect the experience we’ve got from the use of CALI 2.0.
The following changes are worth mentioning explicitely:

1. The algebraic rule concept was adapted to CALI. It allows to supply rule based co-
efficient domains. This is a more efficient way to deal with (easy) algebraic numbers
than through the arnum package.

2. listtest and listminimize provide an unified concept for different list operations pre-
viously scattered in the source text.
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3. There are several new quotient algorithms at the symbolic level (both the general
element and the intersection approaches are available) and new features for the
computation of equidimensional hull and equidimensional radical.

4. A new module scripts offers advanced applications of Gröbner bases.

5. Several advanced procedures initialize a Gröbner basis computation over a certain
intermediate base ring or term order as e.g. eliminate, resolve, matintersect or all
primary decomposition procedures. Interrupting a computation in v. 2.1 now restores
the original values of CALI’s global variables, since all intermediate procedures work
with local copies of the global variables.2 This doesn’t apply to advanced procedures
that change the current base ring as e.g. blowup, preimage, sym etc.

1.4 New and Improved Facilities in v. 2.2

Version 2.2 (beside bug fixes) incorporates several new facilities of constructive non linear
algebra that we investigated the last two years, as e.g. dual bases, the Gröbner factorizer,
triangular systems, and local standard bases. Essential changes concern the following
topics:

1. The CALI modules red and groeb were rewritten and the module mora was removed.
This is due to new theoretical insight into standard bases theory as e.g. described
in [13] or [14]. The Gröbner basis algorithm is reorganized as a Gröbner driver with
simplifier and base lists, that involves different versions of polynomial reduction
according to the setting via gbtestversion. It applies now to both noetherian and
non noetherian term orders in a unified way.

The switches binomial and lazy were removed.

2. The Gröbner factorizer was thoroughly revised, extended along the lines explained in
[15], and collected into a separate module groebf. It now allows a list of constraints
also in algebraic mode. Two versions of an extended Gröbner factorizer produce
triangular systems, i.e. a decomposition into quasi prime components, see [16], that
are well suited for further (numerical) evaluation. There is also a version of the
Gröbner factorizer that allows a list of problems as input. This is especially useful,
if a system is splitted with respect to a “cheap” (e.g. degrevlex) term order and the
pieces are recomputed with respect to a “hard” (e.g. pure lex) term order.

The extended Gröbner factorizer involves, after change to dimension zero, the com-
putation of triangular systems. The corresponding module triang extends the facili-
ties for zero dimensional ideals and modules in the module odim.

3. A new module lf implements the dual bases approach as described in [20]. On this
basis there are new implementations of affine points and proj points, that are sig-
nificantly faster than the old ones. The linear algebra change of term orders [9] is

2Note that recovering the base ring this way may cause some trouble since the intermediate ring,
installed with setring, changed possibly the internal variable order set by setkorder.
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available, too. There are two versions, one with precomputed border basis, the other
with conventional normal forms.

4. dpmats now have a gb-tag that indicates, whether the given ideal or module basis is
already a Gröbner basis. This avoids certain Gröbner basis recomputations especially
during advanced algorithms as e.g. prime decomposition. In the algebraic interface
Gröbner bases are computed automatically when needed rather than to issue an error
message as in v. 2.1. So one can call modequalp or dim etc. not having computed
Gröbner bases in advance. Note that such automatic computation can be avoided
with setgbasis.

5. Hilbert series are now weighted Hilbert series, since e.g. for blow up rings the gen-
erating ideal is multigraded. Usual Hilbert series are computed as in v. 2.1 with
respect to the ecart vector. Weighted Hilbert series accept a list of (integer) weight
lists as second parameter.

6. There are some name and conceptual changes to existing procedures and variables
to have a more concise semantic concept. This concerns

tracing (the trace parameter is now stored on the property list of cali and
should be set with setcalitrace),
choosing different versions of the Gröbner algorithm (through gbtestver-
sion) and the Hilbert series computation (through hftestversion),
some names (mat2list replaced flatten, HilbertSeries replaced hilbseries)
and
parameter lists of some local and internal procedures (consult cali.chg for
details).

7. The revlex term order is now the reverse lexicographic term order on the reversely
ordered variables. This is consistent with other computer algebra systems (e.g.
SINGULAR or AXIOM)3 and implies the same order on the variables for deglex
and degrevlex term orders (this was the main reason to change the definition).

8. Ideals of minors, pfaffians and related stuff are now implemented as extension of
the internal matrix package and collected into a separate module calimat. Thus
they allow more general expressions, especially with variable exponents, as general
REDUCE matrices do. So one can define generic ideals as e.g. ideals of minors
or pfaffians of matrices, containing generic expressions as elements. They must be
specified for further use in CALI substituting general exponents by integers.

3But different to the currently distibuted groebner package in REDUCE. Note that the computations
in [15] were done before these changes.
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1.5 New and Improved Facilities in v. 2.2.1

The main change concerns the primary decomposition algorithm, where I fixed a serious
bug for deciding, which embedded primes are really embedded4. During that remake I
incorporated also the Gröbner factorizer to compute isolated primes. Since REDUCE has
no multivariate modular factorizer, the switch factorprimes may be turned off to switch
to the former algorithm.

Some minor bugs are fixed, too, e.g. the bug that made radical crashing.

2 The Computational Model

This section gives a short introduction into the data type design of CALI at different
levels. First (§1 and 2) we describe CALI’s way of algorithmic translation of the abstract
algebraic objects ring of polynomials, ideal and (finitely generated) module. Then (§3 and
4) we describe the algebraic mode interface of CALI and the switches and global variables
to drive a session. In the next chapter we give a more detailed overview of the basic
(symbolic mode) data structures involved with CALI. We refer to the appendix for a short
summary of the commands available in algebraic mode.

2.1 The Base Ring

A polynomial ring consists in CALI of the following data:

a list of variable names

All variables not occuring in the list of ring names are treated as pa-
rameters. Computations are executed denominatorfree, but the results
are valid only over the corresponding parameter field extension.

a term order and a term order tag

They describe the way in which the terms in each polynomial (and poly-
nomial vector) are ordered.

an ecart vector

A list of positive integers corresponding to the variable names.

A base ring may be defined (in algebraic mode) through the command

setring <ring>

with < ring > ::= { vars, tord, tag [, ecart ] } resp.

setring(vars, tord, tag [,ecart])
4That there must be a bug was pointed out to me by Shimoyama Takeshi who compared different

p.d. implementations. The bug is due to an incorrect test for embedded primes: A (superfluous) primary
component may contain none of the isolated primary components, but their intersection! Note that neither
[10] nor [2] comment on that. Details of the implementation will appear in [17].
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This sets the global (symbolic) variable cali!=basering. Here vars is the list of variable
names, tord a (possibly empty) list of weight lists, the degree vectors, and tag the tag
LEX or REVLEX. Optionally one can supply ecart, a list of positive integers of the same
length as vars, to set an ecart vector different from the default one (see below).

The degree vectors must have the same length as vars. If (w1 . . . wk) is the list of
degree vectors then

xa < xb :⇔ either wj(xa) = wj(xb) for j < i and

wi(xa) < wi(xb)

or wj(xa) = wj(xb) for all j and

xa <lex xb resp. xa <revlex xb

Here <lex resp. <revlex denote the lexicographic (tag=LEX) resp. reverse lexicographic
(tag=REVLEX) term orders5 with respect to the variable order given in vars, i.e.

xa < xb :⇔ ∃ j ∀ i < j : ai = bi and aj < bj (lex.)

or
xa < xb :⇔ ∃ j ∀ i > j : ai = bi and aj > bj (revlex.)

Every term order can be represented in such a way, see [24].
During the ring setting the term order will be checked to be Noetherian (i.e. to fulfill

the descending chain condition) provided the switch Noetherian is on (the default). The
same applies turning noetherian on: If the term order of the underlying base ring isn’t
Noetherian the switch can’t be turned over. Hence, starting from a non Noetherian term
order, one should define first a new ring and then turn the switch on.

Useful term orders can be defined by the procedures

degreeorder vars,

that returns tord = {{1, . . . , 1}}.
localorder vars,

that returns tord = {{−1, . . . ,−1}} (a non Noetherian term order for
computations in local rings).

eliminationorder(vars,elimvars),

that returns a term order for elimination of the variables in elimvars,
a subset of all vars. It’s recommended to combine it with the tag
REVLEX.

blockorder(vars,integerlist),

that returns the list of degree vectors for the block order with block
lengths given in the integerlist. Note that these numbers should sum
up to the length of the variable list supplied as the first argument.

5The definition of the revlex term order changed for version 2.2.
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Examples:

vars:={x,y,z};
tord:=degreeorder vars; % Returns {{1,1,1}}.
setring(vars,tord,lex); % GRADLEX in the groebner package.

% or

setring({a,b,c,d},{},lex); % LEX in the groebner package.

% or

vars:={a,b,c,x,y,z};
tord:=eliminationorder(vars,{x,y,z});
tord:=reverse blockorder(vars,{3,3});

% Return both {{0,0,0,1,1,1},{1,1,1,0,0,0}}.
setring(vars,tord,revlex);

The base ring is initialized with

{{t,x,y,z},{{1,1,1,1}},revlex,{1,1,1,1}},

i.e. S = k[t, x, y, z] supplied with the degree wise reverse lexicographic term order.

getring m

returns the ring attached to the object with the identifier m. E.g.

setring getring m

(re)sets the base ring to the base ring of the formerly defined object
(ideal or module) m.

getring()

returns the currently active base ring.

CALI defines also an ecart vector, attaching to each variable a positive weight with
respect to that homogenizations and related algorithms are executed. It may be set
optionally by the user during the setring command. (Default: If the term order is a
(positive) degree order then the ecart is the first degree vector, otherwise each ecart equals
1).

The ecart vector is used in several places for efficiency reason (Gröbner basis compu-
tation with the sugar strategy) or for termination (local standard bases). If the input is
homogeneous the ecart vector should reflect this homogeneity rather than the first degree
vector to obtain the best possible performance. For a discussion of local computations with
encoupled ecart vector see [13]. In general the ecart vector is recommended to be chosen
in such a way that the input examples become close to be homogeneous. Homogenizations
and Hilbert series are computed with respect to this ecart vector.

getecart() returns the ecart vector currently set.
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2.2 Ideals and Modules

If S = k[xv, v ∈ H] is a polynomial ring, a matrix M of size r × c defines a map

f : Sr −→ Sc

by the following rule
f(v) := v ·M for v ∈ Sr.

There are two modules, connected with such a map, im f , the submodule of Sc generated
by the rows of M , and coker f (= Sc/im f). Conceptually we will identify M with im f
for the basic algebra, and with coker f for more advanced topics of commutative algebra
(Hilbert series, dimension, resolution etc.) following widely accepted conventions.

With respect to a fixed basis {e1, . . . , ec} one can define module term orders on Sc,
Gröbner bases of submodules of Sc etc. They generalize the corresponding notions for
ideal bases. See [8] or [22] for a detailed introduction to this area of computational
commutative algebra. This allows to define joint facilities for both ideals and submodules
of free modules. Moreover computing syzygies the latter come in in a natural way.

CALI handles ideal and module bases in a unique way representing them as rows of
a dpmat (distributive polynomial matrix). It attaches to each unit vector ei a monomial
xai , the i-th column degree and represents the rows of a dpmat M as lists of module terms
xaei, sorted with respect to a module term order, that may be roughly6 described as

xaei < xbej :⇔ either xaxai < xbxaj in S

or xaxai = xbxaj

and
i < j (lex.) resp. i > j (revlex.)

Every dpmat M has its own column degrees (no default !). They are managed through
a global (symbolic) variable cali!=degrees.

getdegrees m

returns the column degrees of the object with identifier m.

getdegrees()

returns the current setting of cali!=degrees.

setdegrees <list of monomials>

sets cali!=degrees correspondingly. Use this command before executing
setmodule to give a dpmat prescribed column degrees since cali!=degrees
has no default value and changes during computations. A good guess
is to supply the empty list (i.e. all column degrees are equal to x0). Be
careful defining modules without prescribed column degrees.

6The correct definition is even more difficult.
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To distinguish between ideals and modules the former are represented as a dpmat
with c = 0 (and hence without column degrees). If I ⊂ S is such an ideal one has to
distinguish between the ideal I (with c = 0, allowing special ideal operations as e.g. ideal
multiplication) and the submodule I of the free one dimensional module S1 (with c = 1,
allowing matrix operations as e.g. transposition, matrix multiplication etc.). ideal2mat
converts an (algebraic) list of polynomials into an (algebraic) matrix column whereas
mat2list collects all matrix entries into a list.

2.3 The Algebraic Mode Interface

Corresponding to CALI’s general philosophy explained in the introduction the algebraic
mode interface translates algebraic input into CALI’s internal data representation, calls
the corresponding symbolic functions, and retranslates the result back into algebraic mode.
Since Gröbner basis computations may be very tedious even on small examples, one should
find a well balance between the storage of results computed earlier and the unavoidable
time overhead and memory request associated with the management of these results.

Therefore CALI distinguishes between free and bounded identifiers. Free identifiers
stand only for their value whereas to bounded identifiers several internal information is
attached to their property list for later use.

After the initialization of the base ring bounded identifiers for ideals or modules should
be declared via

setmodule(name,matrix value)

resp.

setideal(name,list of polynomials)

This way the corresponding internal representation (as dpmat) is attached to name as the
property basis, the prefix form as its value and the current base ring as the property ring.

Performing any algebraic operation on objects defined this way their ring will be com-
pared with the current base ring (including the term order). If they are different an error
message occurs. If m is a valid name, after resetting the base ring

setmodule(m1,m)

reevaluates m with respect to the new base ring (since the value of m is its prefix form) and
assigns the reordered dpmat to m1 clearing all information previously computed for m1 (m1
and m may coincide).

All computations are performed with respect to the ring S = k[xv ∈ vars] over the field
k. Nevertheless by efficiency reasons base coefficients are represented in a denominator
free way as standard forms. Hence the computational properties of the base coefficient
domain depend on the dmode and also on auxiliary variables, contained in the expressions,
but not in the variable list. They are assumed to be parameters.

Best performance will be obtained with integer or modular domain modes, but one can
also try algebraic numbers as coefficients as e.g. generated by sqrt or the arnum package.
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To avoid an unnecessary slow-down connected with the management of simplified algebraic
expressions there is a switch hardzerotest (default: off) that may be turned on to force an
additional simplification of algebraic coefficients during each zero test. It should be turned
on only for domain modes without canonical representations as e.g. mixtures of arnums
and square roots. We remind the general zero decision problem for such domains.

Alternatively, CALI offers the possibility to define a set of algebraic substitution rules
that will affect CALI’s base coefficient arithmetic only.

setrules <rule list>

transfers the (algebraic) rule list into the internal representation stored
at the cali value rules.
In particular, setrules {} clears the rules previously set.

getrules()

returns the internal CALI rules list in algebraic form.

We recommend to use setrules for computations with algebraic numbers since they are
better adapted to the data structure of CALI than the algebraic numbers provided by the
arnum package. Note, that due to the zero decision problem complicated setrules based
computations may produce wrong results if base coefficient’s pseudo division is involved
(as e.g. with dp pseudodivmod). In this case we recommend to enlarge the variable set and
add the defining equations of the algebraic numbers to the equations of the problem7.

The standard domain (Integer) doesn’t allow denominators for input. setideal clears
automatically the common denominator of each input expression whereas a polynomial
matrix with true rational coefficients will be rejected by setmodule.

One can save/initialize ideal and module bases together with their accompanying data
(base ring, degrees) to/from a file:

savemat(m,name)

resp.

initmat name

execute the file transfer from/to disk files with the specified file name. e.g.

savemat(m,"myfile");

saves the base ring and the ideal basis of m to the file “myfile” whereas

setideal(m,initmat "myfile");

sets the current base ring (via a call to setring) to the base ring of m saved at “myfile”
and then recovers the basis of m from the same file.

7A qring facility for the computation over quotient rings will be incorporated into future versions.
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2.4 Switches and Global Variables

There are several switches, (fluid) global variables, a trace facility, and global parameters
on the property list of the package name cali to control CALI’s computations.

Switches

bcsimp

on: Cancel out gcd’s of base coefficients. (Default: on)

detectunits

on: replace polynomials of the form
〈monomial〉 ∗ 〈polynomial unit〉 by 〈monomial〉 during interreductions
and standard basis computations.
Affects only local computations. (Default: off)

factorprimes

on: Invoke the Gröbner factorizer during computation of isolated primes.
(Default: on). Note that REDUCE lacks a modular multivariate factor-
izer, hence for modular prime decomposition computations this switch
has to be turned off.

factorunits

on: factor polynomials and remove polynomial unit factors during in-
terreductions and standard basis computations.
Affects only local computations. (Default: off)

hardzerotest

on: try an additional algebraic simplification of base coefficients at each
base coefficient’s zero test. Useful only for advanced base coefficient
domains without canonical REDUCE representation. May slow down
the computation drastically. (Default: off)

lexefgb

on: Use the pure lexicographic term order and zerosolve during reduc-
tion to dimension zero in the extended Gröbner factorizer. This is a
single, but possibly hard task compared to the degrevlex invocation of
zerosolve1. See [16] for a discussion of different zero dimensional solver
strategies. (Default: off)

Noetherian

on: choose algorithms for Noetherian term orders.
off: choose algorithms for local term orders.
(Default: on)
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red total

on: compute total normal forms, i.e. apply reduction (Noetherian term
orders) or reduction with bounded ecart (non Noetherian term orders
to tail terms of polynomials, too.
off: Do only top reduction.
(Default: on)

Tracing

Different to v. 2.1 now intermediate output during the computations is controlled by the
value of the trace and printterms entries on the property list of the package name cali.
The former value controls the intensity of the intermediate output (Default: 0, no tracing),
the latter the number of terms printed in such intermediate polynomials (Default: all).

setcalitrace <n>

changes the trace intensity. Set n = 2 for a sparse tracing (a dot for
each reduction step). Other good suggestions are the values 30 or 40
for tracing the Gröbner algorithm or n > 70 for tracing the normal
form algorithm. The higher n the more intermediate information will
be given.

setcaliprintterms <n>

sets the number of terms that are printed in intermediate polynomials.
Note that this does not affect the output of whole dpmats. The output
of polynomials with more than n terms (n > 0) breaks off and continues
with ellipses.

clearcaliprintterms()

clears the printterms value forcing full intermediate output (according
to the current trace level).

Global Variables

cali!=basering

The currently active base ring initialized e.g. by setring.

cali!=degrees

The currently active module component degrees initialized e.g. by set-
degrees.

cali!=monset

A list of variable names considered as non zero divisors during Gröbner
basis computations initialized e.g. by setmonset. Useful e.g. for binomial
ideals defining monomial varieties or other prime ideals.
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Entries on the Property List of cali

This approach is new for v. 2.2. Information concerning the state of the computational
model as e.g. trace intensity, base coefficient rules, or algorithm versions are stored as
values on the property list of the package name cali. This concerns

trace and printterms

see above.

efgb

Changed by the switch lexefgb.

groeb!=rf

Reduction function invoked during the Gröbner algorithm. It can be
changed with gbtestversion < n > (n = 1, 2, 3, default is 1).

hf!=hf

Variant for the computation of the Hilbert series numerator. It can be
changed with hftestversion < n > (n = 1, 2, default is 1).

rules

Algebraic “replaceby” rules introduced to CALI with the setrules com-
mand.

evlf, varlessp, sublist, varnames, oldborderbasis, oldring, oldbasis

see module lf, implementing the dual bases approach.

3 Basic Data Structures

In the following we describe the data structure layers underlying the dpmat representation
in CALI and some important (symbolic) procedures to handle them. We refer to the source
code and the comments therein for a more complete survey about the procedures available
for different data types.

3.1 The Coefficient Domain

Base coefficients as implemented in the module bcsf are standard forms in the variables
outside the variable list of the current ring. All computations are executed ”denominator
free” over the corresponding quotient field, i.e. gcd’s are canceled out without request. To
avoid this set the switch bcsimp off.8 In the given implementation we use the s.f. procedure
qremf for effective divisibility test. We had some trouble with it under on factor.

Additionally it is possible to supply the parameters occuring as base coefficients with
a (global) set of algebraic rules.9

8This induces a rapid base coefficient’s growth and doesn’t yield Z-Gröbner bases in the sense of [10]
since the S-pair criteria are different.

9This is different from the LET rule mechanism since they must be present in symbolic mode. Hence
for a simultaneous application of the same rules in algebraic mode outside CALI they must additionally
be declared in the usual way.
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setrules!* r

converts an algebraic mode rules list r as e.g. used in WHERE state-
ments into the internal CALI format.

3.2 The Base Ring

The base ring is defined by its name list, the degree matrix (a list of lists of integers),
the ring tag (LEX or REVLEX), and the ecart. The name list contains a phantom
name cali!=mk for the module component at place 0.

The module ring exports among others the selectors ring names, ring degrees, ring tag,
ring ecart, the test function ring isnoetherian and the transfer procedures from/to an (ap-
propriate, printable by mathprint) algebraic prefix form ring from a (including extensive
tests of the supplied parameters for consistency) and ring 2a.

The following procedures allow to define a base ring:

ring_define(name list, degree matrix, ring tag, ecart)

combines the given parameters to a ring.

setring!* <ring>

sets cali!=basering and checks for consistency with the switch Noethe-
rian. It also sets through setkorder the current variable list as main
variables. It is strongly recommended to use setring!* . . . instead of
cali!=basering:=. . . .

degreeorder!* , localorder!*, eliminationorder!*, and blockorder!* define term
order matrices in full analogy to algebraic mode.

There are three ring constructors for special purposes:

ring_sum(a,b)

returns a ring, that is constructed in the following way: Its variable list
is the union of the (disjoint) lists of the variables of the rings a and b
(in this order) whereas the degree list is the union of the (appropriately
shifted) degree lists of b and a (in this order). The ring tag is that of
a. Hence it returns (essentially) the ring b

⊕
a if b has a degree part

(e.g. useful for elimination problems, introducing “big” new variables)
and the ring a

⊕
b if b has no degree part (introducing “small” new

variables).
ring_rlp(r,u)

u is a subset of the names of the ring r. Returns the ring r, but with a
term order “first degrevlex on u, then the order on r”.

ring_lp(r,u)

As rlp, but with a term order “first lex on u, then the order on r”.
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Example:

vars:=’(x y z)
setring!* ring_define(vars,degreeorder!* vars,’lex,’(1 1 1));

% GRADLEX in the groebner package.

3.3 Monomials

The current version uses a place-driven exponent representation closely related to a vec-
tor model. This model handles term orders on S and module term orders on Sc in a
unique way. The zero component of the exponent list of a monomial contains its mod-
ule component (> 0) or 0 (ring element). All computations are executed with respect
to a current ring (cali!=basering) and current (monomial) weights of the free generators
ei, i = 1, . . . , c, of Sc (cali!=degrees). For efficiency reasons every monomial has a pre-
computed degree part that should be reevaluated if cali!=basering (i.e. the term order)
or cali!=degrees were changed. cali!=degrees contains the list of column degrees of
the current module as an assoc. list and will be set automatically by (almost) all dpmat
procedure calls. Since monomial operations use the degree list that was precomputed with
respect to fixed column degrees (and base ring)

watch carefully for cali!=degrees programming at the monomial or
dpoly level !

As procedures there are selectors for the module component, the exponent and the
degree parts, comparison procedures, procedures for the management of the module com-
ponent and the degree vector, monomial arithmetic, transfer from/to prefix form, and
more special tools.

3.4 Polynomials and Polynomial Vectors

CALI uses a distributive representation as a list of terms for both polynomials and poly-
nomial vectors, where a term is a dotted pair

(< monomial > . < base coefficient >).

The ecart of a polynomial (vector) f =
∑

ti with (module) terms ti is defined as

max(ec(ti))− ec(lt(ti)),

see [13]. Here ec(ti) denotes the ecart of the term ti, i.e. the scalar product of the exponent
vector of ti (including the monomial weight of the module generator) with the ecart vector
of the current base ring.

As procedures there are selectors, dpoly arithmetic including the management of the
module component, procedures for reordering (and reevaluating) polynomials wrt. new
term order degrees, for extracting common base coefficient or monomial factors, for transfer
from/to prefix form and for homogenization and dehomogenization (wrt. the current ecart
vector).

Two advanced procedures use ideal theory ingredients:
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dp_pseudodivmod(g,f)

returns a dpoly list {q, r, z} such that z · g = q · f + r and z is a dpoly
unit (i.e. a scalar for Noetherian term orders). For non Noetherian term
orders the necessary modifications are described in [14].
g, f and r belong to the same free module or ideal.

dpgcd(a,b)

computes the gcd of two dpolys a and b by the syzygy method: The
syzygy module of {a, b} is generated by a single element [−b0 a0] with
a = ga0, b = gb0, where g is the gcd of a and b. Since it uses dpoly
pseudodivision it may work not properly with setrules.

3.5 Base Lists

Ideal bases are one of the main ingredients for dpmats. They are represented as lists of
base elements and contain together with each dpoly entry the following information:

• a number (the row number of the polynomial vector in the corresponding dpmat).

• the dpoly, its ecart (as the main sort criterion), and length.

• a representation part, that may contain a representation of the given dpoly in terms
of a certain fixed basis (default: empty).

The representation part is managed during normal form computations and other row
arithmetic of dpmats appropriately with the following procedures:

bas_setrelations b

sets the relation part of the base element i in the base list b to ei.

bas_removerelations b

removes all relations, i.e. replaces them with the zero polynomial vector.

bas_getrelations b

gets the relation part of b as a separate base list.

Further there are procedures for selection and construction of base elements and for
the manipulation of lists of base elements as e.g. sorting, renumbering, reordering, sim-
plification, deleting zero base elements, transfer from/to prefix form, homogenization and
dehomogenization.

3.6 Dpoly Matrices

Ideals and matrices, represented as dpmats, are the central data type of the CALI package,
as already explained above. Every dpmat m combines the following information:

• its size (dpmat rows m,dpmat cols m),
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• its base list (dpmat list m) and

• its column degrees as an assoc. list of monomials (dpmat coldegs m). If this list is
empty, all degrees are assumed to be equal to x0.

• New in v. 2.2 there is a gb-tag (dpmat gbtag m), indicating that the given base list
is already a Gröbner basis (under the given term order).

The module dpmat contains selectors, constructors, and the algorithms for the basic
management of this data structure as e.g. file transfer, transfer from/to algebraic prefix
forms, reordering, simplification, extracting row degrees and leading terms, dpmat matrix
arithmetic, homogenization and dehomogenization.

The modules matop and quot collect more advanced procedures for the algebraic man-
agement of dpmats.

3.7 Extending the REDUCE Matrix Package

In v. 2.2 minors, Jacobian matrix, and Pfaffians are available for general REDUCE ma-
trices. They are collected in the module calimat and allow to define procedures in more
generality, especially allowing variable exponents in polynomial expressions. Such a gen-
eralization is especially useful for the investigation of whole classes of examples that may
be obtained from a generic one by specialization. In the following m is a matrix given in
algebraic prefix form.

matjac(m,l)

returns the Jacobian matrix of the ideal m (given as an algebraic mode
list) with respect to the variable list l.

minors(m,k)

returns the matrix of k-minors of the matrix m.

ideal_of_minors(m,k)

returns the ideal of the k-minors of the matrix m.

pfaffian m

returns the pfaffian of a skewsymmetric matrix m.

ideal_of_pfaffians(m,k)

returns the ideal of the 2k-pfaffians of the skewsymmetric matrix m.

random_linear_form(vars,bound)

returns a random linear form in algebraic prefix form in the supplied
variables vars with integer coefficients bounded by the supplied bound.

singular_locus!*(m,c)

returns the singular locus of m (as dpmat). m must be an ideal of codi-
mension c given as a list of polynomials in prefix form. Singular locus
computes the ideal generated by the corresponding Jacobian and m it-
self.
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4 About the Algorithms Implemented in CALI

Below we give a short explanation of the main algorithmic ideas of CALI and the way
they are implemented and may be accessed (symbolically).

4.1 Normal Form Algorithms

For v. 2.2 we completely revised the implementation of normal form algorithms due to the
insight obtained from our investigations of normal form procedures for local term orders
in [14] and [13]. It allows a common handling of Noetherian and non Noetherian term
orders already on this level thus making superfluous the former duplication of reduction
procedures in the modules red and mora as in v. 2.1.

Normal form algorithms reduce polynomials (or polynomial vectors) with respect to
a given finite set of generators of an ideal or module. The result is not unique except
for a total normal form with respect to a Gröbner basis. Furthermore different reduction
strategies may yield significant differences in computing time.

CALI reduces by first matching, usually keeping base lists sorted with respect to the
sort predicate red better. In v. 2.2 we sort solely by the dpoly length, since the introduction
of red TopRedBE, i.e. reduction with bounded ecart, guarantees termination also for non
Noetherian term orders. Overload red better for other reduction strategies.

Reduction procedures produce for a given ideal basis B ⊂ S and a polynomial f ∈ S
a (pseudo) normal form h ∈ S such that h ≡ u · f mod B where u ∈ S is a polynomial
unit, i.e. a (polynomially represented) non zero domain element in the Noetherian case
(pseudodivision of f by B) or a polynomial with a scalar as leading term in the non
Noetherian case. Following up the reduction steps one can even produce a presentation of
h− u · f as a polynomial combination of the base elements in B.

More general, given for fi ∈ B and f representations fi =
∑

rikek = Ri · ET and
f = R · ET as polynomial combinations wrt. a fixed basis E one can produce such a
presentation also for h. For this purpose the dpoly f and its representation are collected
into a base element and reduced simultaneously by the base list B, that collects the base
elements and their representations.

The main procedures of the newly designed reduction package are the following:

red_TopRedBE(bas,model)

Top reduction with bounded ecart of the base element model by the base
list bas, i.e. only reducing the top term and only with base elements with
ecart bounded by that of model.

red_TopRed(bas,model)

Top reduction of model, but without restrictions.

red_TailRed(bas,model)

Make tail reduction on model, i.e. top reduction on the tail terms. For
convergence this uses reduction with bounded ecart for non Noetherian
term orders and full reduction otherwise.
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There is a common red TailRedDriver that takes a top reduction function as
parameter. It can be used for experiments with other top reduction procedure
combinations.

red_TotalRed(bas,model)

A terminating total reduction, i.e. for Noetherian term orders the clas-
sical one and for local term orders using tail reduction with bounded
ecart.

red_Straight bas

Reduce (with red TailRed) the tails of the polynomials in the base list
bas.

red_TopInterreduce bas

Reduces the base list bas with red TopRed until it has pairwise incom-
parable leading terms, computes correct representation parts, but does
no tail reduction.

red_Interreduce bas

Does top and, if on red total, also tail interreduction on the base list
bas.

Usually, e.g. for ideal generation problems, there is no need to care about the multiplier
u. If nevertheless one needs its value, the base element f may be prepared with red prepare
to collect this information in the 0-slot of its representation part. Extract this information
with red extract.

red_redpol(bas,model)

combines this tool with a total reduction of the base element model and
returns a dotted pair

(< reduced model > . < dpoly unit multiplier >).

Advanced applications call the interfacing procedures

interreduce!* m

that returns an interreduced basis of the dpmat m.

mod!*(f,m)

that returns the dotted pair (h.u) where h is the pseudo normal form of
the dpoly f modulo the dpmat m and u the corresponding polynomial
unit multiplier.

normalform!*(a,b)

that returns {a1, r, z} with a1 = z ∗a−r∗b where the rows of the dpmat
a1 are the normalforms of the rows of the dpmat a with respect to the
dpmat b.
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For local standard bases the ideal generated by the basic polynomials may have com-
ponents not passing through the origin. Although they do not contribute to the ideal in
Loc(S) = Sm they usually heavily increase the necessary computational effort. Hence for
local term orders one should try to remove polynomial units as soon as they are detected.
To remove them from base elements in an early stage of the computation one can either
try the (cheap) test, whether f ∈ S is of the form 〈monomial〉 ∗ 〈polynomial unit〉 or
factor f completely and remove polynomial unit factors. For base elements this may be
done with bas detectunits or bas factorunits.

Moreover there are two switches detectunits and factorunits, both off by default, that
force such automatic simplifications during more advanced computations.

The procedure deleteunits!* tries explicitely to factor the basis polynomials of a dpmat
and to remove polynomial units occuring as one of the factors.

4.2 The Gröbner and Standard Basis Algorithms

There is now a unique module groeb that contains the Gröbner resp. standard basis algo-
rithms with syzygy computation facility and related topics. There are common procedures
(working for both Noetherian and non Noetherian term orders)

gbasis!* m

that returns a minimal Gröbner or standard basis of the dpmat m,

syzygies!* m

that returns an interreduced basis of the first syzygy module of the
dpmat m and

syzygies1!* m

that returns a (not yet interreduced) basis of the syzygy module of the
dpmat m.

These procedures start the outer Gröbner engine (now also common for both Noethe-
rian and non Noetherian term orders)

groeb_stbasis(m,mgb,ch,syz)

that returns, applied to the dpmat m, three dpmats g, c, s with

g — the minimal reduced Gröbner basis of m if mgb = t,

c — the transition matrix g = c ·m if ch = t, and

s — the (not yet interreduced) syzygy matrix of m if syz = t.

The next layer manages the preparation of the representation parts of the base elements
to carry the syzygy information, calls the general internal driver, and extracts the relevant
information from the result of that computation. The general internal driver branches
according to different reduction functions into several versions. Upto now there are three
different strategies for the reduction procedures for the S-polynomial reduction (different
versions may be chosen via gbtestversion):
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1. Total reduction with local simplifier lists. For local term orders this is (almost)
Mora’s first version for the tangent cone (the default).

2. Total reduction with global simplifier list. For local term orders this is (almost)
Mora’s SimpStBasis, see [26].

3. Total reduction with bounded ecart.

The first two versions (almost) coincide for Noetherian term orders. The third version
reduces only with bounded ecart, thus forcing more pairs to be treated than necessary,
but usually less expensive to be reduced. It is not yet well understood, whether this idea
is of practical importance.

groeb lazystbasis calls the lazy standard basis driver instead, that implements Mora’s
lazy algorithm, see [26]. As groeb homstbasis, the computation of Gröbner and standard
bases via homogenization (Lazard’s approach), it is not fully integrated into the algebraic
interface. Use

homstbasis!* m

for the invocation of the homogenization approach to compute a stan-
dard basis of the dpmat m and

lazystbasis!* m

for the lazy algorithm.

Experts commonly agree that the classical approach is better for “computable” examples,
but computations done by the author on large examples indicate, that both approaches
are in fact independent.

The pair list management uses the sugar strategy, see [11], with respect to the current
ecart vector. If the input is homogeneous and the ecart vector reflects this homogeneity
then pairs are sorted by ascending degree. Hence no superfluous base elements will be
computed in this case. In general the sugar strategy performs best if the ecart vector is
chosen to make the input close to be homogeneous.

There is another global variable cali!=monset that may contain a list of variable names
(a subset of the variable names of the current base ring). During the “pure” Gröbner
algorithm (without syzygy and representation computations) common monomial factors
containing only these variables will be canceled out. This shortcut is useful if some of the
variables are known to be non zero divisors as e.g. in most implicitation problems.

setmonset!* vars

initializes cali!=monset with a given list of variables vars.

The Gröbner tools as e.g. pair criteria, pair list update, pair management and S-
polynomial construction are available.

groeb_mingb m

extracts a minimal Gröbner basis from the dpmat m, removing base
elements with leading terms, divisible by other leading terms.
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groeb_minimize(bas,syz)

minimizes the dpmat pair (bas, syz) deleting superfluous base elements
from bas using syzygies from syz containing unit entries.

4.3 The Gröbner Factorizer

If k̄ is the algebraic closure of k, B := {f1, . . . , fm} ⊂ S a finite system of polynomials,
and C := {g1, . . . , gk} a set of side conditions define the relative set of zeroes

Z(B,C) := {a ∈ k̄n : ∀ f ∈ B f(a) = 0 and ∀g ∈ C g(a) 6= 0}.

Its Zariski closure is the zero set of I(B) :<
∏

C >.
The Gröbner factorizer solves the following problem:

Find a collection (Bα, Cα) of Gröbner bases Bα and side conditions Cα such
that

Z(B,C) =
⋃
α

Z(Bα, Cα).

The module groebf and the module triang contain algorithms related to that problem,
triangular systems, and their generalizations as described in [15] and [16]. V. 2.2 thus
heavily extends the algorithmic possibilities that were implemented in former releases of
CALI.

Note that, different to v. 2.1, we work with constraint lists.

groebfactor!*(bas,con)

returns for the dpmat ideal bas and the constraint list con (of dpolys) a
minimal list of (dpmat, constraint list) pairs with the desired property.

During a preprocessing it splits the submitted basis bas by a recursive factorization of
polynomials and interreduction of bases into a (reduced) list of smaller subproblems con-
sisting of a partly computed Gröbner basis, a constraint list, and a list of pairs not yet
processed. The main procedure forces the next subproblem to be processed until another
factorization is possible. Then the subproblem splits into subsubproblems, and the sub-
problem list will be updated. Subproblems are kept sorted with respect to their expected
dimension easydim forcing this way a depth first recursion. Returned and not yet interre-
duced Gröbner bases are, after interreduction, subject to another call of the preprocessor
since interreduced polynomials may factor anew.

listgroebfactor!* l

proceeds a whole list of dpmats (without constraints) at once and strips
off constraints at the end.
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Using the (ordinary) Gröbner factorizer even components of different dimension may
keep gluing together. The extended Gröbner factorizer involves a postprocessing, that
guarantees a decomposition into puredimensional components, given by triangular systems
instead of Gröbner bases. Triangular systems in positive dimension must not be Gröbner
bases of the underlying ideal. They should be preferred, since they are more simple
but contain all information about the (quasi) prime component that they represent. The
complete Gröbner basis of the corresponding component can be obtained by an easy stable
quotient computation, see [16]. We refer to the same paper for the definition of triangular
systems in positive dimension, that is consistent with our approach.

extendedgroebfactor!*(bas,c) and extendedgroebfactor1!*(bas,c)

return a list of results {bi, ci, vi} in algebraic prefix form such that bi is
a triangular set wrt. the variables vi and ci is a list of constraints, such
that bi :<

∏
ci > is the (puredimensional) recontraction of the zerodi-

mensional ideal bi
⊗

k k(vi). For the first version the recontraction is not
computed, hence the output may be not minimal. The second version
computes recontractions to decide superfluous components already dur-
ing the algorithm. Note that the stable quotient computation involved
for that purpose may drastically slow down the whole attempt.

The postprocessing involves a change to dimension zero and invokes (zero dimensional)
triangular system computations from the module triang. In a first step groebf zeroprimes1
incorporates the square free parts of certain univariate polynomials into these systems and
strips off the constraints (since relative sets of zeroes in dimension zero are Zariski closed),
using a splitting approach analogous to the Gröbner factorizer. In a second step, according
to the switch lexefgb, either zerosolve!* or zerosolve1!* converts these intermediate results
into lists of triangular systems in prefix form. If lexefgb is off (the default), the zero
dimensional term order is degrevlex and zerosolve1!*, the “slow turn to lex” is involved, for
on lexefgb the pure lexicographic term order and zerosolve!*, Möllers original approach,
see [23], are used. Note that for this term order we need only a single Gröbner basis
computation at this level.

A third version, zerosolve2!*, mixes the first approach with the FGLM change of term
orders. It is not incorporated into the extended Gröbner factorizer.

4.4 Basic Operations on Ideals and Modules

Gröbner and local standard bases are the heart of several basic algorithms in ideal theory,
see e.g. [2, 6.2.]. CALI offers the following facilities:

submodulep!*(m,n)

tests the dpmat m for being a submodule of the dpmat n reducing the
basis elements of m with respect to n. The result will be correct provided
n is a Gröbner basis.

modequalp!*(m,n)

= submodulep!*(m,n) and submodulep!*(n,m).
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eliminate!*(m,<variable list>)

computes the elimination ideal/module eliminating the variables in the
given variable list (a subset of the variables of the current base ring).
Changes temporarily the term order to degrevlex.

matintersect!* l 10

computes the intersection of the dpmats in the dpmat list l along [2,
6.20].

CALI offers several quotient algorithms. They rest on the computation of quotients
by a single element of the following kind: Assume M ⊂ Sc, v ∈ Sc, f ∈ S. Then there are

the module quotient M : (v) = {g ∈ S | gv ∈ M},
the ideal quotient M : (f) = {w ∈ Sc | fw ∈ M}, and

the stable quotient M : (f)∞ = {w ∈ Sc | ∃n : fnw ∈ M}.
CALI uses the elimination approach [7, 4.4.] and [2, 6.38] for their computation:

matquot!*(M,f)

returns the module or ideal quotient M : (f) depending on f .

matqquot!*(M,f)

returns the stable quotient M : (f)∞.

matquot!* calls the pseudo division with remainder

dp_pseudodivmod(g,f)

that returns a dpoly list {q, r, z} such that z · g = q · f + r with a dpoly
unit z. (g, f and r must belong to the same free module). This is done
uniformly for noetherian and local term orders with an extended normal
form algorithm as described in [14].

In the same way one defines the quotient of a module by another module (both em-
bedded in a common free module Sc), the quotient of a module by an ideal, and the stable
quotient of a module by an ideal. Algorithms for their computation can be obtained from
the corresponding algorithms for a single element as divisor either by the generic element
method [8] or as an intersection [2, 6.31]. CALI offers both approaches (X=1 or 2 below)
at the symbolic level, but for true quotients only the latter one is integrated into the
algebraic mode interface.

idealquotientX!*(M,I)

returns the ideal quotient M : I of the dpmat M by the dpmat ideal I.
10This can be done for ideals and modules in an unique way. Hence idealintersect!* has been removed

in v. 2.1.
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modulequotientX!*(M,N)

returns the module quotient M : N of the dpmat M by the dpmat N .

annihilatorX!* M

returns the annihilator of coker M , i.e. the module quotient Sc : M , if
M is a submodule of Sc.

matstabquot!*(M,I)

returns the stable quotient M : I∞ (only by the general element
method).

4.5 Monomial Ideals

Monomial ideals occur as ideals of leading terms of (ideal’s) Gröbner bases and also as
components of leading term modules of submodules of free modules, see [12], and reflect
some properties of the original ideal/module. Several parameters of the original ideal or
module may be read off from it as e.g. dimension and Hilbert series.

The module moid contains the corresponding algorithms on monomial ideals. Mono-
mial ideals are lists of monomials, kept sorted by descending lexicographic order as pro-
posed in [1].

moid_primes u

returns the minimal primes (as a list of lists of variable names) of the
monomial ideal u using an adaption of the algorithm, proposed in [1] for
the computation of the codimension.

indepvarsets!* m

returns (based on moid primes) the list of strongly independent sets of
m, see [19] and [12] for definitions.

dim!* m

returns the dimension of coker m as the size of the largest independent
set.

codim!* m

returns the codimension of coker m.

easyindepset!* m

returns a maximal with respect to inclusion independent set of m.

easydim!* m

is a fast dimension algorithm (based on easyindepset), that will be cor-
rect if m is (radically) unmixed. Since it is significantly faster than the
general dimension algorithm11, it should be used, if all maximal inde-
pendent sets are known to be of equal cardinality (as e.g. for prime or
unmixed ideals, see [12]).

11This algorithm is of linear time as opposed to the problem to determine the dimension of an arbitrary
monomial ideal, that is known to be NP-hard in the number of variables, see [1].
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4.6 Hilbert Series

CALI v. 2.2 now offers also weighted Hilbert series, i.e. series that may reflect multiho-
mogeneity of ideals and modules. For this purpose a weighted Hilbert series has a list of
(integer) degree vectors as second parameter, and the ideal(s) of leading terms are evalu-
ated wrt. these weights. For the output and polynomial arithmetic, involved during the
computation of the Hilbert series numerator, the different weight levels are mapped onto
the first variables of the current ring. If w is such a weight vector list and I is a monomial
ideal in the polynomial ring S = k[xv : v ∈ V ] we get (using multi exponent notation)

H(S/I, t) :=
∑
α

|{xa 6∈ I : w(a) = α}| · tα =
Q(t)∏

v∈V

(
1− tw(xv)

)

for a certain polynomial Hilbert series numerator Q(t). H(R/I, t) is known to be a rational
function with pole order at t = 1 equal to dim R/I. Note that WeightedHilbertSeries
returns a reduced rational function where the gcd of numerator and denominator is canceled
out.

(Non weighted) Hilbert series call the weighted Hilbert series procedure with a single
weight vector, the ecart vector of the current ring.

The Hilbert series numerator Q(t) is computed using (the obvious generalizations to
the weighted case of) the algorithms in [1] and [3]. Experiments suggest that the for-
mer is better for few generators of high degree whereas the latter has to be preferred
for many generators of low degree. Choose the version with hftestversion n, n = 1, 2.
Bayer/Stillman’s approach (n = 1) is the default. In the following m is a dpmat and
Gröbner basis.

hf_whilb(m,w)

returns the weighted Hilbert series numerator Q(t) of m according to
the version chosen with hftestversion.

WeightedHilbertSeries!*(m,w)

returns the weighted Hilbert series reduced rational function of m as s.q.

HilbertSeries!*(m,w)

returns the Hilbert series reduced rational function of m wrt. the ecart
vector of the current ring as s.q.

hf_whilb3(u,w) and hf_whs_from_resolution(u,w)

compute the weighted Hilbert series numerator and the corresponding
reduced rational function from (the column degrees of) a given resolution
u.

degree!* m

returns the value of the numerator of the reduced Hilbert series of m at
t = 1. i.e. the sum of its coefficients. For the standard ecart this is the
degree of coker m.
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4.7 Resolutions

Resolutions of ideals and modules, represented as lists of dpmats, are computed via re-
peated syzygy computation with minimization steps between them to get minimal bases
and generators of syzygy modules. Note that the algorithms apply simultaneously to both
Noetherian and non Noetherian term orders. For compatibility reasons with further re-
leases v. 2.2 introduces a second parameter to bound the number of syzygy modules to
be computed, since Hilbert’s syzygy theorem applies only to regular rings.

Resolve!*(m,d)

computes a minimal resolution of the dpmat m, i.e. a list of dpmats
{s0, s1, s2, . . .}, where sk is the k-th syzygy module of m, upto part sd.

BettiNumbers!* c and GradedBettiNumbers!* c

returns the Betti numbers resp. the graded Betti numbers of the resolu-
tion c, i.e. the list of the lengths resp. the degree lists (according to the
ecart) themselves of the dpmats in c.

4.8 Zero Dimensional Ideals and Modules

There are several algorithms that either force the reduction of a given problem to dimension
zero or work only for zero dimensional ideals or modules. The module odim offers such
algorithms. It contains, e.g.

dimzerop!* m

that tests a dpmat m for being zero dimensional.

getkbase!* m

that returns a (monomial) k-vector space basis of Coker m provided m
is a Gröbner basis.

odim_borderbasis m

that returns a border basis, see [20], of the zero dimensional dpmat m
as a list of base elements.

odim_parameter m

that returns a parameter of the dpmat m, i.e. a variable x ∈ vars such
that k[x]

⋂
Ann Sc/m = (0), or nil if m is zero dimensional.

odim_up(a,m)

that returns an univariate polynomial (of smallest possible degree if m is
a gbasis) in the variable a, that belongs to the zero dimensional dpmat
ideal m, using Buchberger’s approach [5].

4.9 Primary Decomposition and Related Algorithms

The algorithms of the module prime implement the ideas of [10] with modifications along
[18] and their natural generalizations to modules as e.g. explained in [28]. Version 2.2.1
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fixes a serious bug detecting superfluous embedded primary components, see section 1.5,
and contains now a second primary decomposition algorithm, based on ideal separation,
as standard. For a discussion about embedded primes and the ideal separation approach,
see [17].

CALI contains also algorithms for the computation of the unmixed part of a given
module and the unmixed radical of a given ideal (along the same lines). We followed
the stepwise recursion decreasing dimension in each step by 1 as proposed in (the final
version of) [10] rather than the “one step” method described in [2] since handling leading
coefficients, i.e. standard forms, depending on several variables is a quite hard job for
REDUCE12.

In the following procedures m must be a Gröbner basis.

zeroradical!* m

returns the radical of the zero dimensional ideal m, using squarefree
decomposition of univariate polynomials.

zeroprimes!* m

computes as in [10] the list of prime ideals of Ann F/M if m is zero
dimensional, using the (sparse) general position argument from [19].

zeroprimarydecomposition!* m

computes the primary components of the zero dimensional dpmat m
using prime splitting with the prime ideals of Ann F/M . It returns a
list of pairs with first entry the primary component and second entry
the corresponding associated prime ideal.

isprime!* m

a (one step) primality test for ideals, extracted from [10].

isolatedprimes!* m

computes (only) the isolated prime ideals of Ann F/M .

radical!* m

computes the radical of the dpmat ideal m, reducing as in [10] to the
zero dimensional case.

easyprimarydecomposition!* m

computes the primary components of the dpmat m, if it has no embed-
ded components. The algorithm uses prime splitting with the isolated
prime ideals of Ann F/M . It returns a list of pairs as in zeroprimary-
decomposition!*.

primarydecomposition!* m

computes the primary components of the dpmat m along the lines of [10].
It returns a list of two-element lists as in zeroprimarydecomposition!*.

12prime!=decompose2 implements this strategy in the symbolic mode layer.
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unmixedradical!* m

returns the unmixed radical, i.e. the intersection of the isolated primes
of top dimension, associated to the dpmat ideal m.

eqhull!* m

returns the equidimensional hull, i.e. the intersection of the top dimen-
sional primary components of the dpmat m.

4.10 Advanced Algorithms

The module scripts just under further development offers some advanced topics of the
Gröbner bases theory. It introduces the new data structure of a map between base rings:

A ring map
φ : R −→ S

for R = k[ri], S = k[sj ] is represented in symbolic mode as a list

{preimage ring R, image ring S, subst list},

where subst list is a substitution list {r1 = φ1(s), r2 = φ2(s), . . .} in algebraic prefix
form, i.e. looks like (list (equal var image) ...).

The central tool for several applications is the computation of the preimage φ−1(I) ⊂ R
of an ideal I ⊂ S either under a polynomial map φ or its closure in R under a rational
map φ, see [2, 7.69 and 7.71].

preimage!*(m,map)

computes the preimage of the ideal m in algebraic prefix form under the
given polynomial map and sets the current base ring to the preimage
ring. Returns the result also in algebraic prefix form.

ratpreimage!*(m,map)

computes the closure of the preimage of the ideal m in algebraic prefix
form under the given rational map and sets the current base ring to the
preimage ring. Returns the result also in algebraic prefix form.

Derived applications are

affine_monomial_curve!*(l,vars)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure sets the current base ring and returns the defining ideal
of the affine monomial curve with generic point (ti : i ∈ l) computing
the corresponding preimage.

analytic_spread!* M

Computes the analytic spread of M , i.e. the dimension of the exceptional
fiber R(M)/mR(M) of the blowup along M over the irrelevant ideal m
of the current base ring.
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assgrad!*(M,N,vars)

Computes the associated graded ring

grR(N) := (R/N ⊕N/N2 ⊕ . . .) = R(N)/NR(N)

over the ring R = S/M , where M and N are dpmat ideals defined over
the current base ring S. vars is a list of new variable names one for each
generator of N . They are used to create a second ring T with degree
order corresponding to the ecart of the row degrees of N and a ring map

φ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S ⊕ T )/J is a presentation of the
desired associated graded ring over the new current base ring S ⊕ T .

blowup!*(M,N,vars)

Computes the blow up R(N) := R[N · t] of N over the ring R = S/M ,
where M and N are dpmat ideals defined over the current base ring S.
vars is a list of new variable names one for each generator of N . They
are used to create a second ring T with degree order corresponding to
the ecart of the row degrees of N and a ring map

φ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S ⊕ T )/J is a presentation of the
desired blowup ring over the new current base ring S ⊕ T .

proj_monomial_curve!*(l,vars)

l is a list of integers, vars a list of variable names of the same length as
l. The procedure set the current base ring and returns the defining ideal
of the projective monomial curve with generic point (sd−i · ti : i ∈ l) in
R, where d = max{x : x ∈ l}, computing the corresponding preimage.

sym!*(M,vars)

Computes the symmetric algebra Sym(M) where M is a dpmat ideal
defined over the current base ring S. vars is a list of new variable names
one for each generator of M . They are used to create a second ring R
with degree order corresponding to the ecart of the row degrees of N
and a ring map

φ : S ⊕R −→ S.

It returns a dpmat ideal J such that (S⊕R)/J is the desired symmetric
algebra over the new current base ring S ⊕R.

There are several other applications:

minimal_generators!* m

returns a set of minimal generators of the dpmat m inspecting the first
syzygy module.
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nzdp!*(f,m)

tests whether the dpoly f is a non zero divisor on coker m. m must be
a Gröbner basis.

symbolic_power!*(m,d)

returns the dth symbolic power of the prime dpmat ideal m as the equidi-
mensional hull of the dth true power. (Hence applies also to unmixed
ideals.)

varopt!* m

finds a heuristically optimal variable order by the approach in [4] and
returns the corresponding list of variables.

4.11 Dual Bases

For the general ideas underlying the dual bases approach see e.g. [20]. This paper explains,
that constructive problems from very different areas of commutative algebra can be for-
mulated in a unified way as the computation of a basis for the intersection of the kernels
of a finite number of linear functionals generating a dual S-module. Our implementation
honours this point of view, presenting two general drivers dualbases and dualhbases for the
computation of such bases (even as submodules of a free module M = Sm) with affine
resp. projective dimension zero.

Such a collection of N linear functionals

L : M = Sm −→ kN

should be given through values {[ei, L(ei)], i = 1, . . . , m} on the generators ei of M and
an evaluation function evlf([p,L(p)],x), that evaluates L(p · x) from L(p) for p ∈ M
and the variable x ∈ S.

dualbases starts with a list of such generator/value constructs generating M and per-
forms Gaussian reduction on expressions [p · x, L(p · x)], where p was already processed,
L(p) 6= 0, and x ∈ S is a variable. These elements are processed in ascending order wrt.
the term order on M . This guarantees both termination and that the resulting basis of
ker L is a Gröbner basis. The N values of L are attached to N variables, that are ordered
linearly. Gaussian elimination is executed wrt. this variable order.

To initialize the dual bases driver one has to supply the basic generator/value list
(through the parameter list; for ideals just the one element list containing the generator
[1 ∈ S,L(1)]), the evaluation function, and the linear algebra variable order. The latter
are supplied via the property list of cali as properties evlf and varlessp. Different
applications need more entries on the property list of cali to manage the communication
between the driver and the calling routine.

dualhbases realizes the same idea for (homogeneous) ideals and modules of (projective)
dimension zero. It produces zerodimensional “slices” with ascending degree until it reaches
a supremum supplied by the user, see [20] for details.
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Applications concern affine and projective defining ideals of a finite number of points13

and two versions (with and without precomputed border basis) of term order changes for
zerodimensional ideals and modules as first described in [9].

affine_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as
many columns as the current base ring has ring variables. This proce-
dure returns the defining ideal of the collection of points in affine space
with coordinates given by the rows of m. Note that m may contain
parameters. In this case k is treated as rational function field.

change_termorder!*(m,r) and change_termorder1!*(m,r)

m is a Gröbner basis of a zero dimensional ideal wrt. the current base
ring. These procedures change the current ring to r and compute the
Gröbner basis of m wrt. the new ring r. The former uses a precomputed
border basis.

proj_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure
returns the defining ideal of the collection of points in projective space
with homogeneous coordinates given by the rows of m. Note that m
may as for affine points contain parameters.

13This substitutes the “brute force” method computing the corresponding intersections directly as it was
implemented in v. 2.1. The new approach is significantly faster. The old stuff is available as affine points1!*
and proj points1!*.
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A A Short Description of Procedures Available in Algebraic
Mode

Here we give a short description, ordered alphabetically, of algebraic procedures offered
by CALI in the algebraic mode interface14.

If not stated explicitely procedures take (algebraic mode) polynomial matrices (c > 0)
or polynomial lists (c = 0) m, m1, m2, . . . as input and return results of the same type.
gb stands for a bounded identifier15, gbr for one with precomputed resolution. For the
mechanism of bounded identifier see the section “Algebraic Mode Interface”.

affine_monomial_curve(l,vars)

l is a list of integers, vars a list of variable names of the same length
as l. The procedure sets the current base ring and returns the defining
ideal of the affine monomial curve with generic point (ti : i ∈ l).

affine_points m

m is a matrix of domain elements (in algebraic prefix form) with as
many columns as the current base ring has ring variables. This proce-
dure returns the defining ideal of the collection of points in affine space
with coordinates given by the rows of m. Note that m may contain
parameters. In this case k is treated as rational function field.

analytic_spread m

Computes the analytic spread of m.

annihilator m

returns the annihilator of the dpmat m ⊆ Sc, i.e. Ann Sc/M .

assgrad(M,N,vars)

Computes the associated graded ring grR(N) over R = S/M , where S is
the current base ring. vars is a list of new variable names, one for each
generator of N . They are used to create a second ring T to return an
ideal J such that (S ⊕ T )/J is the desired associated graded ring over
the new current base ring S ⊕ T .

bettiNumbers gbr

extracts the list of Betti numbers from the resolution of gbr.

blowup(M,N,vars)

Computes the blow up R(N) of N over the ring R = S/M , where S
is the current base ring. vars is a list of new variable names, one for
each generator of N . They are used to create a second ring T to return
an ideal J such that (S ⊕ T )/J is the desired blowup ring over the new
current base ring S ⊕ T .

14It does not contain switches, get. . . procedures, setting trace level and related stuff.
15Different to v. 2.1 a Gröbner basis will be computed automatically, if necessary.
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change_termorder(m,r) and change_termorder1(m,r)

Change the current ring to r and compute the Gröbner basis of m wrt.
the new ring r by the FGLM approach. The former uses internally a
precomputed border basis.

codim gb

returns the codimension of Sc/gb.

degree gb

returns the multiplicity of gb as the sum of the coefficients of the (clas-
sical) Hilbert series numerator.

degsfromresolution gbr

returns the list of column degrees from the minimal resolution of gbr.

deleteunits m

factors each basis element of the dpmat ideal m and removes factors
that are polynomial units. Applies only to non Noetherian term orders.

dim gb

returns the dimension of Sc/gb.

dimzerop gb

tests whether Sc/gb is zerodimensional.

directsum(m1,m2,...)

returns the direct sum of the modules m1,m2, . . ., embedded into the
direct sum of the corresponding free modules.

dpgcd(f,g)

returns the gcd of two polynomials f and g, computed by the syzygy
method.

easydim m and easyindepset m

If the given ideal or module is unmixed (e.g. prime) then all maximal
strongly independent sets are of equal size and one can look for a maxi-
mal with respect to inclusion rather than size strongly independent set.
These procedures don’t test the input for being a Gröbner basis or un-
mixed, but construct a maximal with respect to inclusion independent
set of the basic leading terms resp. detect from this (an approximation
for) the dimension.

easyprimarydecomposition m

a short primary decomposition using ideal separation of isolated primes
of m, that yields true results only for modules without embedded com-
ponents. Returns a list of {component, associated prime} pairs.
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eliminate(m,<variable list>)

computes the elimination ideal/module eliminating the variables in the
given variable list (a subset of the variables of the current base ring).
Changes temporarily the term order to degrevlex.

eqhull m

returns the equidimensional hull of the dpmat m.

extendedgroebfactor(m,c) and extendedgroebfactor1(m,c)

return for a polynomial ideal m and a list of (polynomial) constraints c
a list of results {bi, ci, vi}, where bi is a triangular set wrt. the variables
vi and ci is a list of constraints, such that Z(m, c) =

⋃
Z(bi, ci). For the

first version the output may be not minimal. The second version decides
superfluous components already during the algorithm.

gbasis gb

returns the Gröbner resp. local standard basis of gb.

getkbase gb

returns a k-vector space basis of Sc/gb, consisting of module terms,
provided gb is zerodimensional.

getleadterms gb

returns the dpmat of leading terms of a Gröbner resp. local standard
basis of gb.

GradedBettinumbers gbr

extracts the list of degree lists of the free summands in a minimal reso-
lution of gbr.

groebfactor(m[,c])

returns for the dpmat ideal m and an optional constraint list c a (re-
duced) list of dpmats such that the union of their zeroes is exactly
Z(m, c). Factors all polynomials involved in the Gröbner algorithms of
the partial results.

HilbertSeries gb

returns the Hilbert series of gb with respect to the current ecart vector.

homstbasis m

computes the standard basis of m by Lazard’s homogenization approach.

ideal2mat m

converts the ideal (=list of polynomials) m into a column vector.

ideal_of_minors(mat,k)

computes the generators for the ideal of k-minors of the matrix mat.
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ideal_of_pfaffians(mat,k)

computes the generators for the ideal of the 2k-pfaffians of the skewsym-
metric matrix mat.

idealpower(m,n)

returns the interreduced basis of the ideal power mn with respect to the
integer n ≥ 0.

idealprod(m1,m2,...)

returns the interreduced basis of the ideal product m1 ·m2 · . . . of the
ideals m1,m2, . . ..

idealquotient(m1,m2)

returns the ideal quotient m1 : m2 of the module m1 ⊆ Sc by the ideal
m2.

idealsum(m1,m2,...)

returns the interreduced basis of the ideal sum m1 + m2 + . . ..

indepvarsets gb

returns the list of strongly independent sets of gb with respect to the
current term order, see [19] for a definition in the case of ideals and [12]
for submodules of free modules.

initmat(m,<file name>

initializes the dpmat m together with its base ring, term order and
column degrees from a file.

interreduce m

returns the interreduced module basis given by the rows of m, i.e. a basis
with pairwise indivisible leading terms.

isolatedprimes m

returns the list of isolated primes of the dpmat m, i.e. the isolated primes
of Ann Sc/M .

isprime gb

tests the ideal gb to be prime.

iszeroradical gb

tests the zerodimensional ideal gb to be radical.

lazystbasis m

computes the standard basis of m by the lazy algorithm, see e.g. [26].

listgroebfactor in

computes for the list in of ideal bases a list out of Gröbner bases by the
Gröbner factorization method, such that

⋃
m∈in Z(m) =

⋃
m∈out Z(m).

mat2list m

converts the matrix m into a list of its entries.
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matappend(m1,m2,...)

collects the rows of the dpmats m1,m2, . . . to a common matrix.
m1,m2, . . . must be submodules of the same free module, i.e. have equal
column degrees (and size).

mathomogenize(m,var) 16

returns the result obtained by homogenization of the rows of m with
respect to the variable var and the current ecart vector.

matintersect(m1,m2,...)

returns the interreduced basis of the intersection m1
⋂

m2
⋂

. . ..

matjac(m,<variable list>)

returns the Jacobian matrix of the ideal m with respect to the supplied
variable list

matqquot(m,f)

returns the stable quotient m : (f)∞ of the dpmat m by the polynomial
f ∈ S.

matquot(m,f)

returns the quotient m : (f) of the dpmat m by the polynomial f ∈ S.

matstabquot(m1,id)

returns the stable quotient m1 : id∞ of the dpmat m1 by the ideal id.

matsum(m1,m2,...)

returns the interreduced basis of the module sum m1 + m2 + . . . in a
common free module.

minimal_generators m

returns a set of minimal generators of the dpmat m.

minors(m,b)

returns the matrix of minors of size b× b of the matrix m.

a mod m

computes the (true) normal form(s), i.e. a standard quotient represen-
tation, of a modulo the dpmat m. a may be either a polynomial or a
polynomial list (c = 0) or a matrix (c > 0) of the correct number of
columns.

modequalp(gb1,gb2)

tests, whether gb1 and gb2 are equal (returns YES or NO).

modulequotient(m1,m2)

returns the module quotient m1 : m2 of two dpmats m1,m2 in a common
free module.

16Dehomogenize with sub(z=1,m) if z is the homogenizing variable.
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normalform(m1,m2)

returns a list of three dpmats {m3, r, z}, where m3 is the normalform of
m1 modulo m2, z a scalar matrix of polynomial units (i.e. polynomials
of degree 0 in the noetherian case and polynomials with leading term of
degree 0 in the tangent cone case), and r the relation matrix, such that

m3 = z ∗m1 + r ∗m2.

nzdp(f,m)

tests whether the dpoly f is a non zero divisor on coker m.

pfaffian mat

returns the pfaffian of a skewsymmetric matrix mat.

preimage(m,map)

computes the preimage of the ideal m under the given polynomial map
and sets the current base ring to the preimage ring.

primarydecomposition m

returns the primary decomposition of the dpmat m as a list of
{component, associated prime} pairs.

proj_monomial_curve(l,vars)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure sets the current base ring and returns the defining ideal
of the projective monomial curve with generic point (sd−i · ti : i ∈ l) in
R where d = max{x : x ∈ l}.

proj_points m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure
returns the defining ideal of the collection of points in projective space
with homogeneous coordinates given by the rows of m. Note that m
may as for affine points contain parameters.

radical m

returns the radical of the dpmat ideal m.

random_linear_form(vars,bound)

returns a random linear form in the variables vars with integer coeffi-
cients less than the supplied bound.

ratpreimage(m,map)

computes the closure of the preimage of the ideal m under the given
rational map and sets the current base ring to the preimage ring.
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resolve(m[,d])

returns the first d members of the minimal resolution of the bounded
identifier m as a list of matrices. If the resolution has less than d non
zero members, only those are collected. (Default: d = 100)

savemat(m,<file name>)

save the dpmat m together with the settings of it base ring, term order
and column degrees to a file.

setgbasis m

declares the rows of the bounded identifier m to be already a Gröbner
resp. local standard basis thus avoiding a possibly time consuming
Gröbner or standard basis computation.

sieve(m,<variable list>)

sieves out all base elements with leading terms having a factor contained
in the specified variable list (a subset of the variables of the current base
ring). Useful for elimination problems solved “by hand”.

singular_locus(M,c)

returns the defining ideal of the singular locus of Spec S/M where M
is an ideal of codimension c, adding to M the generators of the ideal of
the c-minors of the Jacobian of M .

submodulep(m,gb)

tests, whether m is a submodule of gb (returns YES or NO).

sym(M,vars)

Computes the symmetric algebra Sym(M) where M is an ideal defined
over the current base ring S. vars is a list of new variable names, one
for each generator of M . They are used to create a second ring R to
return an ideal J such that (S ⊕R)/J is the desired symmetric algebra
over the new current base ring S ⊕R.

symbolic_power(m,d)

returns the dth symbolic power of the prime dpmat ideal m.

syzygies m

returns the first syzygy module of the bounded identifier m.

tangentcone gb

returns the tangent cone part, i.e. the homogeneous part of highest de-
gree with respect to the first degree vector of the term order from the
Gröbner basis elements of the dpmat gb. The term order must be a
degree order.

unmixedradical m

returns the unmixed radical of the dpmat ideal m.
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varopt m

finds a heuristically optimal variable order, see [4].

vars := varopt m; setring(vars, {}, lex); setideal(m, m);

changes to the lexicographic term order with heuristically best perfor-
mance for a lexicographic Gröbner basis computation.

WeightedHilbertSeries(m,w)

returns the weighted Hilbert series of the dpmat m. Note that m is not
a bounded identifier and hence not checked to be a Gröbner basis. w is
a list of integer weight vectors.

zeroprimarydecomposition m

returns the primary decomposition of the zerodimensional dpmat m as
a list of {component, associated prime} pairs.

zeroprimes m

returns the list of primes of the zerodimensional dpmat m.

zeroradical gb

returns the radical of the zerodimensional ideal gb.

zerosolve m, zerosolve1 m and zerosolve2 m

Returns for a zerodimensional ideal a list of triangular systems that
cover Z(m). Zerosolve needs a pure lex. term order for the “fast” turn
to lex. as described in [23], Zerosolve1 is the “slow” turn to lex. as
described in [16], and Zerosolve2 incorporated the FGLM term order
change into Zerosolve1.
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B The CALI Module Structure

name subject data type representation
cali Header module, contains

global variables, switches etc.
— —

bcsf Base coefficient arithmetic base coeff. standard forms
ring Base ring setting, definition of

the term order
base ring special type RING

mo monomial arithmetic monomials (exp. list . degree list)
dpoly Polynomial and vector arith-

metic
dpolys list of terms

bas Operations on base lists base list list of base elements
dpmat Operations on polynomial ma-

trices, the central data type of
CALI

dpmat special type DPMAT

red Normal form algorithms — —
groeb Gröbner basis algorithm and re-

lated ones
— —

groebf the Gröbner factorizer and its
extensions

— —

matop Operations on (lists of)
dpmats that correspond to
ideal/module operations

— —

quot Different quotient algorithms — —
moid Monomial ideal algorithms monomial

ideal
list of monomials

hf weighted Hilbert series – –
res Resolutions of dpmats resolution list of dpmats
intf Interface to algebraic mode — —
odim Algorithms for zerodimensional

ideals and modules
— —

prime Primary decomposition and re-
lated questions

— —

scripts Advanced applications — —
calimat Extension of the matrix package — —
lf The dual bases approach — —
triang (Zero dimensional) triangular

systems
— —
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Index

affine monomial curve, 33, 36
affine points, 7, 35, 36
affine points1!*, 35
algebraic numbers, 13
analytic spread, 33, 36
annihilator, 28, 36
assgrad, 33, 36

bas detectunits, 23
bas factorunits, 23
bas getrelations, 20
bas removerelations, 20
bas setrelations, 20
base coefficients, 13
base elements, 19
base ring, 9, 17
basis, 13
bcsimp, 14
BettiNumbers, 30, 36
binomial, 7
blockorder, 10, 18
blowup, 7, 33, 36
border basis, 8
bounded identifier, 13, 36

cali, 16
cali!=basering, 9, 16, 18
cali!=degrees, 12, 16, 18
cali!=monset, 16, 25
change of term orders, 7
change termorder, 35, 37
change termorder1, 35, 37
clearcaliprintterms, 16
codim, 29, 37
column degree, 12

degree, 30, 37
degree vectors, 9
degreeorder, 10, 18
degsfromresolution, 37
deleteunits, 23, 37
detectunits, 14, 23

dim, 8, 29, 37
dimzerop, 31, 37
directsum, 37
dmode, 13
dp pseudodivmod, 14, 19, 28
dpgcd, 19, 37
dpmat, 8, 12, 13, 20
dpmat coldegs, 20
dpmat cols, 20
dpmat gbtag, 20
dpmat list, 20
dpmat rows, 20
dual bases, 6, 7, 34, 35

easydim, 26, 29, 37
easyindepset, 29, 37
easyprimarydecomposition, 32, 37
ecart, 3, 19
ecart vector, 8, 11, 40
efgb, 16
eliminate, 7, 27, 38
eliminationorder, 10, 18
eqhull, 32, 38
evlf, 17
extended Gröbner factorizer, 7, 15, 26
extendedgroebfactor, 26, 38
extendedgroebfactor1, 26, 38

factorunits, 15, 23
flatten, 8
free identifier, 13

gb-tag, 8, 20
gbasis, 24, 38
gbtestversion, 7, 8, 16, 24
getdegrees, 12
getecart, 11
getkbase, 31, 38
getleadterms, 38
getring, 11
getrules, 13
global procedures, 5
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GradedBettiNumbers, 30
gradedbettinumbers, 38
groeb, 7
groeb!=rf, 16
groeb homstbasis, 24
groeb lazystbasis, 24
groeb mingb, 25
groeb minimize, 25
groeb stbasis, 24
groebf zeroprimes1, 27
groebfactor, 26, 38

hardzerotest, 15
hf!=hf, 16
hf whilb, 30
hf whilb3, 30
hf whs from resolution, 30
hftestversion, 8, 16, 30
HilbertSeries, 8, 11, 30, 38
homstbasis, 25, 38

ideal2mat, 12, 38
ideal of minors, 21, 38
ideal of pfaffians, 21, 39
idealpower, 39
idealprod, 39
idealquotient, 27, 28, 39
ideals, 12
idealsum, 39
indepvarsets, 29, 39
initmat, 39
internal procedures, 5
interreduce, 23, 39
isolatedprimes, 32, 39
isprime, 32, 39
iszeroradical, 39

lazy, 7
lazystbasis, 25, 39
lexefgb, 15, 27
lexicographic, 9
listgroebfactor, 26, 39
listminimize, 6
listtest, 6
local procedures, 5

localorder, 10, 18

map, 32
mat2list, 8, 12, 39
matappend, 40
mathomogenize, 40
mathprint, 17
matintersect, 7, 27, 40
matjac, 21, 40
matqquot, 28, 40
matquot, 28, 40
matstabquot, 28, 40
matsum, 40
minimal generators, 34, 40
minors, 21, 40
mod, 23, 40
modequalp, 8, 27, 40
module

bcsf, 17
cali, 5
calimat, 8, 21
dpmat, 20
groeb, 24
groebf, 7, 26
lf, 7, 17
moid, 28
mora, 7
odim, 7, 31
prime, 31
ring, 17
scripts, 7, 32
triang, 26, 27

module quotient, 27
module term order, 12
modulequotient, 28, 40
modules, 12
moid primes, 29

Noetherian, 3, 15
normalform, 23, 41
nzdp, 34, 41

odim borderbasis, 31
odim parameter, 31
odim up, 31
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oldbasis, 17
oldborderbasis, 17
oldring, 17

pfaffian, 21, 41
preimage, 7, 32, 41
primarydecomposition, 7, 41
printterms, 16
proj monomial curve, 33, 41
proj points, 7, 35, 41
proj points1!*, 35

radical, 32, 41
random linear form, 21, 41
ratpreimage, 33, 41
red, 7
red better, 22
red extract, 23
red Interreduce, 23
red prepare, 23
red redpol, 23
red Straight, 22
red TailRed, 22
red TailRedDriver, 22
red TopInterreduce, 23
red TopRed, 22
red TopRedBE, 22
red total, 15
red TotalRed, 22
Resolve, 7, 30, 42
reverse lexicographic, 8, 9
ring, 13
ring 2a, 17
ring define, 17
ring degrees, 17
ring ecart, 17
ring from a, 17
ring isnoetherian, 17
ring lp, 18
ring names, 17
ring rlp, 18
ring sum, 18
ring tag, 17
rules, 16

savemat, 42
setcaliprintterms, 16
setcalitrace, 8, 15
setdegrees, 12, 16
setgbasis, 8, 42
setideal, 13, 14
setkorder, 18
setmodule, 13, 14
setmonset, 16, 25
setring, 7, 9, 11, 14, 16, 18
setrules, 13, 14, 16, 17, 19
sieve, 42
singular locus, 21, 42
stable quotient, 27
sublist, 17
submodulep, 27, 42
switch

bcsimp, 17
hardzerotest, 13
lexefgb, 16, 27
Noetherian, 10, 18

sym, 7, 34, 42
symbolic power, 34, 42
syzygies, 24, 42
syzygies1, 24

tangentcone, 42
term, 19
trace, 16
tracing, 8
triang, 7
triangular systems, 7, 26

unmixedradical, 32, 42

varlessp, 17
varnames, 17
varopt, 34, 43

WeightedHilbertSeries, 8, 29, 30, 43

zeroprimarydecomposition, 31, 32, 43
zeroprimes, 31, 43
zeroradical, 31, 43
zerosolve, 15, 27, 43
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zerosolve1, 15, 27, 43
zerosolve2, 27, 43
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[17] H.-G. Gräbe: Factorized Gröbner bases and primary decomposition. To appear.

[18] H. Kredel: Primary ideal decomposition. In: Proc. EUROCAL’87, Lecture Notes in
Comp. Sci. 378 (1986), 270 - 281.

[19] H. Kredel, V. Weispfenning: Computing dimension and independent sets for poly-
nomial ideals. J. Symb. Comp. 6 (1988), 231 - 247.
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