CANTENS
A Package for Manipulations
and Simplifications of Indexed Objects

H. Caprasse
Institut de Physique
Sart-Tilman, B-4000 LIEGE

email: hubert.caprasse@ulg.ac.be

1 Introduction

CANTENS is a package that creates an environment inside REDUCE which
allows the user to manipulate and simplify expressions containing various
indexed objects like tensors, spinors, fields and quantum fields. Briefly
said, it allows him

- to define generic indexed quantities which can eventually depend
implicitly or explicitly on any number of variables;

- to define one or several affine or metric (sub-)spaces, and to work
within them without difficulty;

- to handle dummy indices and simplify adequatly expressions which
contain them.

Beside the above features, it offers the user:

1. Several invariant elementary tensors which are always used in
the applications involving the use of indexed objects like delta,
epsilon, eta and the generalized delta function.

2. The possibility to define any metric and to make it bloc-diagonal
if he wishes to.

3. The capability to symmetrize or antisymmetrize any expression.

1 INTRODUCTION 2

4. The possibility to introduce any kind of symmetry (even partial
symmetries) for the indexed objects.

5. The choice to work with commutative, non-commutative or anti-
commutative indexed objects.

In this package, one cannot find algorithms or even specific objects (i.e.
like the covariant derivative or the SU(3) group structure constants)
which are of used either in nuclear and particle physics. The objective of
the package is simply to allow the user to easily formulate his algorithms
in the notations he likes most. The package is also conceived so as to
minimize the number of new commands. However, the large number of
new capabilities inherently implies that quite a substantial number of
new functions and commands must be used. On the other hand, in order
to avoid too many error or warning messages the package assumes, in
many cases, that the user is reponsible of the consistency of its inputs.
The author is aware that the package is still perfectible and he will be
grateful to all people who shall spare some time to communicate bugs
or suggest improvements.

The documentation below is separated into four sections. In the first
one, the space(s) properties and definitions are described.

In the second one, the commands to geberate and handle generic
indexed quantities (called abusively tensors) are illustrated. The ma-
nipulation and control of free and dummy indices is discussed.

In the third one, the special tensors are introduced and their proper-
ties discussed especially with respect to their ability to work simultane-
ously within several subspaces.

The last section, which is also the most important, is devoted en-
tirely to the simplification function CANONICAL. This function origi-
nates from the package DUMMY and has been substantially extended . It
takes account of all symmetries, make dummy summations and seeks a
“canonical” form for any tensorial expression. Without it, the present
package would be much less useful.

Finally, an index has been created. It contains numerous references
to the text. Different typings have been adopted to make a clear dis-
tinction between them. The conventions are the following:

2 HANDLING OF SPACE(S) 3

e Procedure keywords are typed in capital roman letters.

e Package keywords are typed in typewriter capital letters.
e Cantens package keywords are in small typewriter letters.
e All other keywords are typed in small roman letters.

When CANTENS is loaded, the packages ASSIST and DUMMY are also
loaded.

2 Handling of space(s)

One can work either in a single space environment or in a multiple space
environment. After the package is loaded, the single space environment
is set and a unique space is defined. It is euclidian, and has a symbolic
dimension equal to dim. The single space environment is determined by
the switch ONESPACE which is turned on. One can verify the above
assertions as follows :

onespace 7; => yes
wholespace_dim 7; => dim

signature 7; => 0

One can introduce a pseudoeuclidian metric for the above space by the
command SIGNATURE and verify that the signature is indeed 1:

signature 1;

signature 7; => 1

In principle the signature may be set to any positive integer. However,
presently, the package cannot handle signatures larger than 1. One gets
the Minkowski-like space metric

2 HANDLING OF SPACE(S) 4

which corresponds to the convention of high energy physicists. It is pos-
sible to change it into the astrophysicists convention using the command
GLOBAL_SIGN :

global_sign 7; => 1
global_sign (-1);

global_sign 7; => -1

This means that the actual metric is now (—1,1,1,1). The space
dimension may, of course, be assigned at will using the function
WHOLESPACE_DIM. Below, it is assigned to 4:

wholespace_dim 4; ==> 4

When the switch ONESPACE is turned off, the system assumes that
this default space is non-existent and, therefore, that the user is going
to define the space(s) in which he wants to work. Unexpected error
messages will occur if it is not done. Once the switch is turned off
many more functions become active. A few of them are available in the
algebraic mode to allow the user to properly conctruct and control the
properties of the various (sub-)spaces he is going to define and, also, to
assign symbolic indices to some of them.

DEFINE_SPACES is the space constructor and wholespace is a re-
served identifier which is meant to be the name of the global space if
subspaces are introduced. Suppose we want to define a unique space,
we can choose for its any name but choosing wholespace will be more
efficient. On the other hand, it leaves open the possibility to introduce
subspaces in a more transparent way. So one writes, for instance,:

define_spaces wholespace=

{6,signature=1,indexrange=0 .. B}; ==>t

The arguments inside the list, assign respectively the dimension, the
signature and the range of the numeric indices which is allowed. Notice
that the range starts from 0 and not from 1. This is made to conform
with the usual convention for spaces of signature equal to 1. However,
this is not compulsory. Notice that the declaration of the indexrange

2 HANDLING OF SPACE(S) 5

may be omitted if this is the only defined space. There are two other
options which may replace the signature option. They are euclidian
and affine they have both an obvious significance.

In the subsequent example, an eleven dimension global space is de-
fined and two subspaces of this space are specified. Notice that no
indexrange has been declared for the entire space. However, the in-
dexrange declaration is compulsory for subspaces otherwise the package
will improperly work when dealing with numeric indices.

define_spaces wholespace={11,signature=1}; ==> t
define_spaces mink=

{4,signature=1,indexrange=0 .. 3}; ==> ¢t
define_spaces eucl=

{6,euclidian, indexrange=4 .. 9}; ==> t

To remind ones the space context in which one is working, the use of the
function SHOW_SPACES is required. Its output is an algebraic value
from which the user can retrieve all the informations displayed. After
the declarations above, this function gives:

show_spaces(); ==>
{{wholespace,11,signature=1}
{mink,4,signature=1,indexrange=0. .3},

{eucl,6,euclidian, indexrange=4..9}}

If an input error is made or if one wants to change the space framework,
one cannot directly redefine the relevant space(s). For instance, the
input

define_spaces eucl=

{7,euclidian,indexrange=4 .. 9}; ==>

2 HANDLING OF SPACE(S) 6

*x** Warning: eucl cannot be (or is already)
defined as space identifier
t

whih aims to fill all dimensions present in wholespace tells that the
space eucl cannot be redefined. To redefine it effectively, one is to
remove the existing definition first using the function REM_SPACES
which takes any number of space-names as its argument. Here is the

illustration:
rem_spaces eucl; ==>t
show_spaces(); ==>

{{wholespace,11,signature=1},
{mink,4,signature=1, indexrange=0..3}}
define_spaces eucl=
{7,euclidian,indexrange=4 .. 10}; ==> t
show_spaces(); ==>
{{wholespace,11,signature=1},
{mink,4,signature=1,indexrange=0. .3},

{eucl,7,euclidian, indexrange=4..10}}

Here, the user is entirely responsible of the coherence of his construction.
The system does NOT verify it but will incorrectly run if there is a
mistake at this level.

When two spaces are direct product of each other (as the color and
Minkowski spaces in quantum chromodynamics), it is not necessary to
introduce the global space wholespace.

3 GENERIC TENSORS AND THEIR MANIPULATION 7

“Tensors” and symbolic indices can be declared to belong to a specific
space or subspace. It is in fact an essential ingredient of the package and
make it able to handle expressions which involve quantities belonging to
several (sub-)spaces or to handle bloc-diagonal “tensors”. This will be
discussed in the next section. Here, we just mention how to declare
that some set of symbolic indices belong to a specific (sub-)space or
how to declare them to belong to any space. The relevant command is
MK_IDS_BELONG_SPACE whose syntax is

mk_ids_belong_space(<list of indices>,
<space | subspace identifier>)

For example, within the above declared spaces one could write:

mk_ids_belong_space({a0,al,a2,a3},mink); ==> t

mk_ids_belong_space({x,y,z,u,v},eucl); ==> ¢t

The command MK_IDS_BELONG_ANYSPACE allows to remake them
usable either in wholespace if it is defined or in anyone among the
defined spaces. For instance, the declaration:

mk_ids_belong_anyspace al,a2; ==>t

tells that al and a2 belong either to mink or to eucl or to wholespace.

3 Generic tensors and their manipulation

3.1 Definition

The generic tensors handled by CANTENS are objects much more general
than usual tensors. The reason is that they are not supposed to obey
well defined transformation properties under a change of coordinates.
They are only indexed quantities. The indices are either contravariantly
(upper indices) or covariantly (lower indices) placed. They can be sym-
bolic or numeric. When a given index is found both in one upper and in
one lower place, it is supposed to be summed over all space-coordinates
it belongs to viz. it is a dummy index and automatically recognized as
such. So they are supposed to obey the summation rules of tensor cal-
culus. This why and only why they are called tensors. Moreover, aside

3 GENERIC TENSORS AND THEIR MANIPULATION 8

from indices they may also depend implicitly or explicitly on any number
of variables. Within this definition, tensors may also be spinors, they
can be non-commutative or anticommutative, they may also be algebra
generators and represent fields or quantum fields.

3.2 Implications of TENSOR declaration

The procedure TENSOR which takes an arbitrary number of identifiers
as argument defines them as operator-like objects which admit an arbi-
trary number of indices. Each component has a formal character and
may or may not belong to a specific (sub-)space. Numeric indices are
also allowed. The way to distinguish upper and lower indices is the same
as the one in the package EXCALC e.g. —a is a lower index and a is an
upper index. A special printing function has been created so as to mimic
as much as possible the way of writing such objects on a sheet of paper.
Let us illustrate the use of TENSOR:

tensor te; ==>t

te(3,a,-4,b,-c,7); ==>

3 a b 7
te
4 (¢
te(3,a,{x,y},-4,b,-c,7); ==
3 a b 7
te (x,y)
4 C

te(B’a,_4,b,{u,v},—C,7); ==>

3 a b 7

3 GENERIC TENSORS AND THEIR MANIPULATION 9

te (u,v)

te({x,y}); ==> te(x,y)
Notice that the system distinguishes indices from variables on input

solely on the basis that the user puts variables inside a list.

The dependence can also be declared implicit through the REDUCE
command DEPEND which is generalized so as to allow to declare a
tensor to depend on another tensor irrespective of its components. It
means that only one declaration is enough to express the dependence
with respect to all its components. A simple example:

tensor te,x;
depend te,x;
df (te(a,-b) ,x(c)); ==>

a C
df (te ,X)
b

Therefore, when all objects are tensors, the dependence declaration is
valid for all indices.

One can also avoid the trouble to place the explicit variables in-
side a list if one declare them as variables through the command
MAKE_VARIABLES. This property can also be removedl]l using RE-
MOVE_VARIABLES:

make_variables x,y; ==> t

te(x,y); ==> te(x,y)

!One important feature of this package is its reversibility viz. it gives the user
the means to erase its previous operations at any time. So, most functions described
below do possess “removing” action companions.

3 GENERIC TENSORS AND THEIR MANIPULATION 10

te(x,y,a); ==>

a
te (x,y)

remove_variables x; ==> t

te(x,y,a); ==>

X a
te 62

If one does that one must be careful not to substitute a number to such
declared variables because this number would be considered as an index
and no longer as a variable. So it is only useful for formal variables.

A tensor can be easily eliminated using the function REM_TENSOR.
It has the syntax

rem_tensor t1,t2,t3;

3.2.1 Dummy indices recognition

For all individual tensors met by the evaluator, the system will anal-
yse the written indices and will detect those which must be considered
dummy according to the usual rules of tensor calculus. Those indices
will be given the dummy property and will no longer be allowed to play
the role of free indices unless the user removes this dummy property.
In that way, the system checks immediately the consistency of an in-
put. Three functions are at the disposal of the user to control dummy
indices. They are DUMMY _INDICES, REM_DUMMY _INDICES and
REM_DUMMY_IDS. The following illustrates their use as well as the
behaviour of the system:

dummy_indices(); ==> {} ¥ In a fresh environment

te(a)br-c’_a) ; ==>

3 GENERIC TENSORS AND THEIR MANIPULATION 11

ab
te
c a
dummy_indices(); ==> {a}
te(a,b,-c,a); ==>

#*xxx* ((c)(a b a)) are inconsistent lists of indices

% a cannot be found twice as an upper index
te(a,b,-b,-a); ==>

ab

te
b a
dummy_indices(); ==> {b,a}
te(d,-d,d); ==>
**xxxx ((d)(d d)) are inconsistent lists of indices

dummy_indices(); ==> {d,b,a}
rem_dummy_ids d; ==> t
dummy_indices(); ==> {b,a}
te(d,d); ==>

dd
te % This is allowed again.

dummy_indices(); ==> {b,a}

3 GENERIC TENSORS AND THEIR MANIPULATION 12

rem_dummy_indices(); ==> t

dummy_indices(); ==> {}

Other verifications of coherence are made when space specifications are
introduced both in the ON and OFF onespace environment. We shall
discuss them later.

3.2.2 Substitutions, assignements and rewriting rules

The user must be able to manipulate and give specific characteristics
to the generic tensors he has introduced. Since tensors are essentially
REDUCE operators, the usual commands of the system are available.
However, some limitations are implied by the fact that indices and, es-
pecially numeric indices, must always be properly recognized before any
substitution or manipulation is done. We have gathered below a set of
examples which illustrate all the “delicate” points. First, the substitu-
tions:

sub(a=-c,te(a,b)); ==
b
te
sub(a=-1,te(a,b)); ==>
b
te
sub(a=-0,te(a,b)); ==

0b
te % sub has replaced -0 by 0. wrong!

sub(a=-10,te(a,b)); ==>

3 GENERIC TENSORS AND THEIR MANIPULATION 13

b
te % right
0

The substitution of an index by -0 is the only one case where there
is a problem. The function SUB replaces -0 by 0 because it does not
recognize 0 as an index of course. Such a recognition is context depen-
dent and implies a modification of SUB for this single exceptional case.
Therefore,we have opted, not do do so and to use the index 0 which is
simply !0 instead of 0.

Second, the assignements. Here, we advise the user to rely on the op-

erator==M instead of the operator :=. Again, the reason is to avoid the
problem raised above in the case of substitutions. := does not evaluate

its lefthandside so that -0 is not recognized as an index and simplified
to 0 while the == evaluates both its lefthandside and its righthandside
and do recognize it. The disadvantage of == is that it demands that
a second assignement on a given component be made only after having
suppressed ezplicitly the first assignement. This is done by the func-
tion REM_VALUE_TENS which can be applied on any component. We
stress, however, that if one is willing to use -!0 instead of -0 as the lower
0 index, the use of := is perfectly legitimate:

te({x,y},a,-0)==xxy*te(a,-0); ==>
a

te kxky
0

te({X,Y},a,‘O) ; ==>
a
te *X*y

0

te({x,y},a,0); ==>

2See the ASSIST documentation for its description.

3 GENERIC TENSORS AND THEIR MANIPULATION 14

ao
te (x,y)

te({x,y},a,-0)==x*xy*te(a,-0); ==>

a
*kkkkx te *x*y invalid as setvalue kernel
0

rem_value_tens te({x,y},a,-0);

te({x,y},a,-0); ==>

te (x,y)
0

te({x,y},a,-0)==(x+y) *te(a,-0); ==>

a
te *(x + y)
0

In the elementary application below, the use of a tensor avoids the in-
troduction of two different operators and makes the calculation more
readable.

te(1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(-1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(2)==sin th * sin phi; ==> sin(phi)*sin(th)
te(-2)==sin th * sin phi; ==> sin(phi)*sin(th)

te(3)==cos th ; ==> cos(th)

3 GENERIC TENSORS AND THEIR MANIPULATION 15

te(-3)==cos th ; ==> cos(th)
for i:=1:3 sum te(i)*te(-i); ==>
2 2 2 2 2

cos(phi) *sin(th) + cos(th) + sin(phi) *sin(th)
rem_value_tens te;
te(2); ==>
2

te

There is no difference in the manipulation of numeric indices and nu-
meric tensor indices. The function REM_VALUE_TENS when applied
to a tensor prefix suppresses the value of all its components. Finally,
there is no “interference” with i as a dummy index and i as a numeric
index in a loop.

Third, rewriting rules. They are either global or local and can be
used as in REDUCE. Again, here, the -0 index problem exists each time
a substitution by the index -0 must be made in a template.

% LET:
let te({x,y},-0)=x*y;
te({x,y},-0); ==> xxy
te({x,y},+0); ==>
0

te (x,y)

te({x,u},-0); ==>

3 GENERIC TENSORS AND THEIR MANIPULATION
te (x,u)
0
% FOR ALL .. LET:
for all x,a let te({x},a,-b)=x*te(a,-b);
te({u}, 1 ’_b) 5 ==>
1
te *u
b
te({u},c,-b); ==>
c
te *u
b
te({u},b,-b); ==>
b
te *u
b
te({u},a,-a); ==>
te (w)
a

for all x,a clear te({x},a,-b);

te({u},c,-b); ==>

te (u)

3 GENERIC TENSORS AND THEIR MANIPULATION

b
for all a,b let te({x},a,-b)=x*te(a,-b);
te({x},c,-b); ==>
c
te *X

b

te({x},a,-a); ==>

te *X

% The index -0 problem:
te({x},a,-0); ==> ¥ -0 becomes +0 in the template
te (x) % the rule does not apply.
0
te({x},0,-10); ==>

0
te *x % here it applies.

% WHERE:
rul:={te("a) => sin a}; ==>

a
rul := {te => sin(a)}

17

3 GENERIC TENSORS AND THEIR MANIPULATION 18

te(1) where rul; ==> sin(1)
te(1l); ==>
1
te

% with variables:

rull:={te("a,{"x,”y}) => xxy*sin(a)}; ==>

a
rull := {te ("x,7y) => x*y*sin(a)}

te(a,{x,y}) where rull; ==> sin(a)x*xx*y

te({x,y},a) where rull; ==> sin(a)*x*y

rul2:={te(-"a,{"x, y}) => xxy*sin(-a)};

rul2 := {te ("x,7y) => x*y*sin(-a)}

a

te(-a,{x,y}) where rul2; ==> -sin(a)*x*y

te({x,y},-a) where rul2; ==> -sin(a)*x*y

Notice that the position of the list of variables inside the rule may be
chosen at will. It is an irrelevant feature of the template. This may be
confusing, so, we advise to write the rules not as above but placing the
list of variables in front of all indices since it is in that canonical form

3 GENERIC TENSORS AND THEIR MANIPULATION 19

which it is written by the simplification function of individual tensors.

3.3 Behaviour under space specifications

The characteristics and the behaviour of generic tensors described up
to now are independent of all space specifications. They are complete
as long as we confine to the default space which is active when starting
CANTENS. However, as soon as some space specification is introduced, it
has some consequences one the generic tensor properties. This is true
both when ONESPACE is switched ON or OFF. Here we shall describe
how to deal with these features.

When onespace is ON, if the space dimension is set to an integer,
numeric indices of any generic tensors are forced to be less or equal that
integer if the signature is 0 or less than that integer if the signature is
equal to 1. The following illustrates what happens.

on omnespace;

wholespace_dim 4; ==> 4
signature 0; ==> 0
te(3,a,-b,7); ==> #*x** numeric indices out of range

te(3,a,-b,3); ==>

te

te(4,a,-b,4); ==>

3 GENERIC TENSORS AND THEIR MANIPULATION 20

te
b

sub(a=5,te(3,a,-b,3));
==> **x¥* numeric indices out of range
signature 1; ==> 1
% Now indices range from O to 3:
te(4,a,-b,4);

==> xxx¥* numeric indices out of range

1]
I
\Y%

te(0,a,-b,3);

0 a 3
te
b

When onespace is OFF, many more possibilities to control the input or
to give specific properties to tensors are open. For instance, it is possible
to declare that a tensor belongs to one of them. It is also possible to
declare that some indices belongs to one of them. It is even possible to do
that for numeric indices thanks to the declaration indexrange included
optionally in the space definition generated by DEFINE_SPACES. First,
when onespace is OFF, the run equivalent to the previous one is like the
following:

off onespace;
define_spaces wholespace={6,signature=1); ==> t
show_spaces(); ==> {{wholespace,6,signature=1}}

make_tensor_belong_space(te,wholespace);

3 GENERIC TENSORS AND THEIR MANIPULATION 21

==> wholespace
te(4,a,-b,6); ==>
*kk*kk numeric indices out of range

te(4,a,-b,5); ==>

te
b

rem_spaces wholespace;
define_spaces wholespace={4,euclidean}; ==> t
te(a,5,-b); ==> x*x**x numeric indices out of range

te(a,4,-b); ==>

a4
te
b
define_spaces eucl={1,signature=0}; ==> ¢t
show_spaces(); ==>

{{wholespace,5,signature=1},
{eucl,1,signature=03}}
make_tensor_belong_space(te,eucl); ==> eucl

te(1l); ==>

3 GENERIC TENSORS AND THEIR MANIPULATION 22

1
te
te(2); ==> **xx* numeric indices out of range
te(0); ==>
0
te

In the run, the new function MAKE_TENSOR_BELONG_SPACE has
been used. One may be surprised that te(0) is allowed in the end of
the previous run and, indeed, it is incorrect that the system allows two
different components to te. This is due to an incomplete definition of the
space. When one deals with spaces of integer dimensions, if one wants
to control numeric indices correctly when onespace is switched off one
must also give the indexrange. So the previous run must be corrected to

define_spaces eucl=
{1,signature=0,indexrange=1 .. 1}; ==> ¢t

make_tensor_belong_space(te,eucl); ==> eucl

*x*x**x numeric indices do not belong to (sub)-space

te(1l); ==>
1

te

te(2); ==>

*x*x*%*x numeric indices do not belong to (sub)-space

4 SPECIFIC TENSORS 23

Notice that the error message has also changed accordingly. So, now one
can even constrain the 0 component to belong to an euclidian space.

Let us go back to symbolic indices. By default, any symbolic index
belongs to the global space or to all defined partial spaces. In many cases,
this is, of course, not consistent. So, the possibility exists to declare that
one or several indices belong to a specific (sub-)space. To this end, one
is to use the function MK IDS_BELONG_SPACE. Its syntax is

mk_ids_belong_space(<list of indices>,
<(sub-)space identifier>)

The function MK_IDS_BELONG_ANYSPACE whose syntax is the same

do the reverse operation.

Combined with the declaration MAKE_TENSOR_BELONG_SPACE,
it allows to express all problems which involve tensors belonging to dif-
ferent spaces and do the dummy summations correctly. One can also
define a tensor which has a “bloc-diagonal” structure. All these features

are illustrated in the next sections which describe specific tensors and
the properties of the extended function CANONICAL.

4 Specific tensors

The means provided in the two previous section to handle generic ten-
sors already allow to construct any specific tensor we may need. That
the package contains a certain number of them is already justified on
the level of conviviality. However, a more important justification is that
some basic tensors are so universaly and frequently used that a careful
programming of these improves considerably the robustness and the ef-
ficiency of most calculations. The choice of the set of specific tensors is
not clearcut. We have tried to keep their number to a minimum but,
experience, may lead us extend it without dificulty. So, up to now, the
list of specific tensors is:

delta tensor,

- eta Minkowski tensor,

- epsilon tensor,

- del generalised delta tensor,

4 SPECIFIC TENSORS 24

- metric generic tensor metric.

It is important to realize that the typewriter font names in the list are
keywords for the corresponding tensors and do not necessarily correspond
to their actual names. Indeed, the choice of the names of particular
tensors is left to the user. When startting CANTENS specific tensors are
NOT available. They must be activated by the user using the function
MAKE_PARTIC_TENS whose syntax is:

make_partic_tens(<tensor name> , <keyword>);

The name chosen may be the same as the keyword. As we shall see, it is
never needed to define more than one delta tensor but it is often needed
to define several epsilon tensors. Hereunder, we describe each of the
above tensors especially their behaviour in a multi-space environment.

4.1 DELTA tensor

It is the simplest example of a bloc-diagonal tensor we mentioned in the
previous section. It can also work in a space which is a direct product of
two spaces. Therefore, one never needs to introduce more than one such
tensor. If one is working in a graphic environment, it is advantageous
to choose the keyword as its name. Here we choose DELT. We illustrate

how it works when the switch onespace is successively switched ON and
OFF.

on onespace;
make_partic_tens(delt,delta); ==> t
delt(a,b); ==>
***xx* bad choice of indices for DELTA tensor
% order of upper and lower indices irrelevant:

delt(a,-b); ==

4 SPECIFIC TENSORS 25

delt
b

delt(-b,a); ==>
delt
b
delt(-a,b); ==>

b
delt

wholespace_dim 7; ==> dim
delt(1,-5); ==> 0
% dummy summation done:

delt(-a,a); ==> dim

wholespace_dim 4; ==> 4
delt(1,-5); ==> x***x numeric indices out of range
wholespace_dim 3; ==> 3

delt(-a,a); ==> 3

There is a peculiarity of this tensor, viz. it can serve to represent the
Dirac delta function when it has no indices and an explicit variable
dependency as hereunder

delt ({x-y}) ==> delt(x-y)

4 SPECIFIC TENSORS 26

Next we work in the context of several spaces:

off onespace;
define_spaces wholespace={5,signature=1}; ==> t

% we need to assign delta to wholespace when it exists:
make_tensor_belong_space(delt,wholespace);
delt(a,-a); ==> 5
delt(0,-0); ==>1
rem_spaces wholespace; ==> t
define_spaces wholespace={5,signature=0}; ==> t
delt(a,-a); ==> 5
delt(0,-a); ==>

*xx**x bad value of indices for DELTA tensor

The checking of consistency of chosen indices is made in the same way
as for generic tensor. In fact, all the previous functions which act on
generic tensors may also affect, in the same way, a specific tensor. For
instance, it was compulsory to explicitly tell that we want DELT to belong
to the wholespace overwise, DELT would remain defined on the default
space. In the next sample run, we display the bloc-diagonal property of
the delta tensor.

onespace 7; ==> no
rem_spaces wholespace; ==> t

define_spaces wholespace={10,signature=1}$

4 SPECIFIC TENSORS

% c

27

define_spaces d1={5,euclidian}$

define_spaces d2={2,euclidian}$

mk_ids_belong_space({a},dl);

mk_ids_belong_space({b},d2);

belongs to wholespace so:

delt(c,-b); ==
c
delt
b
delt(c,-c); ==> 10
delt(b,-b); ==> 2
delt(a,-a); ==> 5

% this is especially important:

delt(a,-b); ==> 0

The bloc-diagonal property of delt is made active under two conditions.
The first is that the system knows to which space it belongs, the sec-
ond is that indices must be declared to belong to a specific space. To
enforce the same property on a generic tensor, we have to make the

MAKE_BLOC_DIAGONAL declaration:

make_bloc_diagonal t1,t2,

*

and to make it active, one proceeds as in the above run. Starting from
a fresh environment, the following sample run is illustrative:

off onespace;

4 SPECIFIC TENSORS

define_spaces wholespace={6,signature=1}$

define_spaces mink={4,signature=1,indexrange=0 ..

define_spaces eucl={3,euclidian,indexrange=4 ..

tensor te;

make_tensor_belong_space(te,eucl); ==> eucl

% the key declaration:

make_bloc_diagonal te; ==> t

% bloc-diagonal property activation:
mk_ids_belong_space({a,b,c},eucl); ==> t

mk_ids_belong_space({m1,m2},mink); ==> t

te(a,b,ml); ==> 0
te(a,b,m2); ==> 0
% bloc-diagonal property suppression:

mk_ids_belong_anyspace a,b,c,ml,m2; ==> t

te(a,b,m2); ==>

a b m2
te

28

3}$

61$

4 SPECIFIC TENSORS 29

4.2 ETA Minkowski tensor

The use of MAKE_PARTIC_TENS with the keyword eta allows to create
a Minkowski diagonal metric tensor in a one or multi-space context either
with the convention of high energy physicists or in the convention of
astrophysicists. Any eta-like tensor is assumed to work within a space
of signature 1. Therefore, if the space whose metric, it is supposed to
describe has a signature 0, an error message follows if one is working

in an ON onespace context and a warning when in an OFF onespace
context. Illustration:

on onespace;
make_partic_tens(et,eta); ==> t
signature 0; ==> 0;

et(-b,-a); ==>

*kkkk signature must be equal to 1 for ETA temnsor

off onespace;
et(a,b); ==>
*%x*x ETA tensor not properly assigned to a space

% it is then evaluated to zero:

on omnespace;

signature 1; ==> 1

4 SPECIFIC TENSORS 30

et(-b,-a); ==>
et
ab

Since et (a,-a) is evaluated to the corresponding delta tensor, one can-
not define properly an eta tensor without a simultaneous introduction
of a delta tensor. Otherwise one gets the following message:

et(a,-a); ==> ****x*x no name found for (delta)
So we need to issue, for instance,
make_partic_tens(delta,delta); ==> t

The value of its diagonal elements depends on the chosen global sign.
The next run illustrates this:

global_sign 7; ==> 1
et(0,0); ==> 1

et(3,3); ==> -1
global_sign(-1); ==> -1
et(0,0); ==> -1

et(3,3); ==> 1

The tensor is of course symmetric . Its indices are checked in the same
way as for a generic tensor. In a multi_space context, the eta tensor
must belong to a well defined space of signature 1:

off onespace;
define_spaces wholespace={4,signature=11}$
make_tensor_belong_space(et,wholespace)$

et(a,-a); ==> 4

4 SPECIFIC TENSORS 31

If the space to which et belongs to is a subspace, one must also take
care to give a space-identity to dummy indices which may appear inside
it. In the following run, the index a belongs to wholespace if it is not
told to the system that it is a dummy index of the space mink:

make_tensor_belong_anyspace et; ==> t
rem_spaces wholespace; ==> t
define_spaces wholespace={8,signature=1}; ==> t
define_spaces mink={5,signature=1}; ==> t
make_tensor_belong_space(et,mink); ==> mink

% a sits in wholespace:
et(a,-a); ==> 8
mk_ids_belong_space({a},mink); ==> ¢t

% a sits in mink:

et(a,-a); ==> b

4.3 EPSILON tensors

It is an antisymmetric tensor which is the invariant tensor for the uni-
tary group transformations in n-dimensional complex space which are
continuously connected to the identity transformation. The number of
their indices are always stricty equal to the number of space dimensions.
So, to each specific space is associated a specific epsilon tensor. Its
properties are also dependent on the signature of the space. We de-
scribe how to define and manipulate it in the context of a unique space
and, next, in a multi-space context

4 SPECIFIC TENSORS 32

4.3.1 ONESPACE is ON

The use of MAKE_PARTIC_TENS places it, by default, in an euclidian
space if the signature is 0 and in a Minkowski-type space if the signature
is 1. For higher signatures it is not constructed. For a space of symbolic
dimension, the number of its indices is not constrained. When it appears
inside an expression, its indices are all currently upper or lower indices.
However, the system allows for mixed positions of the indices. In that
case, the output of the system is changed compared to the input only
to place all contravariant indices to the left of the covariant ones.

make_partic_tens(eps,epsilon); ==> t
eps(a,d,b,-g,e,-f); ==>
adbe
- eps
gt
eps(a,d,b,-f,e,-f); ==> 0
% indices have all the same variance:
eps(-b,-a); ==>
- eps
ab
signature 7; ==> 0
eps(1,2,3,4); ==> 1
eps(-1,-2,-3,-4); ==> 1
wholespace_dim 3; ==> 3

eps(-1,-2,-3); ==> 1

4 SPECIFIC TENSORS 33

eps(-1,-2,-3,-4); ==>

**kxx*k numeric indices out of range
eps(-1,-2,-3,-3); ==>

*x*x*x bad number of indices for (eps) tensor
eps(a,b); ==>

*x*x**x bad number of indices for (eps) tensor

eps(a,b,c); ==>

abec
eps

eps(a,b,b); ==> 0

When the signature is equal to 1, it is known that there exists two con-
ventions which are linked to the chosen value 1 or -1 of the (0,1,...,n)
component. So, the sytem does evaluate all components in terms of the
(0,1,...,n) upper index component. It is left to the user to assign it to
1or-1.

signature 1; ==>1
eps(0,1,2); ==>

012
eps

eps(-0,-1,-2); ==>

012
eps

4 SPECIFIC TENSORS 34

wholespace_dim 4; ==> 4
eps(0,1,2,3); ==>

0123
eps

eps(-0,-1,-2,-3); ==>

0123
- eps

% change of the global_sign convention:
global_sign(-1);
wholespace_dim 3; ==> 3

% compare with second input:
eps(-0,-1,-2); ==>

012
- eps

4.3.2 ONESPACE is OFF

As already said, several epsilon tensors may be defined. They must be
assigned to a well defined (sub-)space otherwise the simplifying function
CANONICAL will not properly work. The set of epsilon tensors de-
fined associated to their space-name may be retrieved using the function
SHOW _EPSILONS. An important word of caution here. The output of
this function does NOT show the epsilon tensor one may have defined in
the ON onespace context. This is so because the default space has NO
name. Starting from a fresh environment, the following run illustrates

4 SPECIFIC TENSORS 35

this point:

show_epsilons(); ==> {}
onespace 7; ==> yes
make_partic_tens(eps,epsilon); ==> t

show_epsilons(); ==> {}

To make the epsilon tensor defined in the single space environment
visible in the multi-space environment, one needs to associate it to a
space. For example:

off onespace;

define_spaces wholespace={7,signature=1}; ==> t

show_epsilons(); ==> {} I still invisible

make_tensor_belong_space(eps,wholespace); ==>
wholespace

show_epsilons(); ==> {{eps,wholespace}}
Next, let us define an additional epsilon-type tensor:

define_spaces eucl={3,euclidian}; ==> t
make_partic_tens(ep,epsilon); ==>

**x Warning: ep MUST belong to a space
t

make_tensor_belong_space(ep,eucl); ==> eucl

show_epsilons(); ==> {{ep,eucl},{eps,wholespacel}}

4 SPECIFIC TENSORS 36

% We show that it is indeed working inside eucl:
ep(-1,-2,-3); ==> 1
ep(1,2,3); ==> 1
ep(a,b,c,d); ==
*x*x*x* bad number of indices for (ep) tensor
ep(1,2,4); ==>

*kkxx numeric indices out of range

As previously, the discrimation between symbolic indices may be intro-
duced by assigning them to one or another space:

rem_spaces wholespace;

define_spaces wholespace={dim,signature=1}; ==> t
mk_ids_belong_space({el,e2,e3},eucl); ==> ¢t
mk_ids_belong_space({a,b,c},wholespace); ==> t
ep(el,e2,e3); ==>

el e2 e3
ep % accepted

ep(el,e2,z); ==>
el e2 z
ep % accepted because z
% not attached to a space.

ep(el,e2,a);==>

**k*xx* some indices are not in the space of ep

4 SPECIFIC TENSORS 37

eps(a,b,c); ==>

abc
eps % accepted because *symbolick
% space dimension.

epsilon-like tensors can also be defined on disjoint spaces. The sub-
sequent sample run starts from the environment of the previous one.
It suppresses the space wholespace as well as the space-assignment of
the indices a,b,c. It defines the new space mink. Next, the previously
defined eps tensor is attached to this space. ep remains unchanged and
el,e2,e3 still belong to the space eucl

rem_spaces wholespace; ==> t
make_tensor_belong_anyspace eps; ==> t

show_epsilons(); ==> {{ep,eucl}}

show_spaces(); ==> {{eucl,3,signature=0}}
mk_ids_belong_anyspace a,b,c; ==>t
define_spaces mink={4,signature=1}; ==> ¢t

show_spaces(); ==>
{{eucl,3,signature=0},
{mink,4,signature=1}}
make_tensor_belong_space(eps,mink); ==> mink
show_epsilons(); ==> {{eps,mink},{ep,eucl}}

eps(a,b,c,d); ==>

4 SPECIFIC TENSORS 38
abcd
eps
eps(el,b,c,d); ==>
***xx* some indices are not in the space of eps
ep(el,b,c,d); ==>
x***x bad number of indices for (ep) tensor
ep(el,b,c); ==>
b cel
ep
ep(el,e2,e3); ==>

el e2 e3
ep

4.4 DEL generalized delta tensor

The generalized delta function comes from the contraction of two ep-
silons. It is totally antisymmetric. Suppose its name has been chosen to
be gd, that the space to which it is attached has dimension n while the
name of the chosen delta tensor is §, then one can define it as follows:

a1 a1 a1

O O 0

2 2 2

gdal,ag,...,an _ 51)1 5b2 T 5 n
b1,b2,..,bn T

(2% Qn an

6()1 5b1 5b1

It is, in general uneconomical to explicitly write that determinant except
for particular numeric values of the indices or when almost all upper
and lower indices are recognized as dummy indices. In the sample run

4 SPECIFIC TENSORS 39

below, gd is defined as the generalized delta function in the default space.
The main automatic evaluations are illustrated. The indices which are
summed over are always simplified:

onespace 7?7 ==> yes
make_partic_tens(delta,delta); ==> t
make_partic_tens(gd,del); ==> t
% immediate simplifications:
gd(1,2,-3,-4); ==> 0
gd(1,2,-1,-2); ==> 1
gd(1,2,-2,-1); ==> -1 % antisymmetric
gd(a,b,-a,-b);
==> dim*(dim - 1) % summed over dummy indices
gd(a,b,c,-a,-d,-e); ==>
b c
gd *(dim - 2)
d e
gd(a,b,c,-a,-d,-c); ==
b 2
delta *(dim - 3*dim + 2)
d

% no simplification:

gd(a,b,c,-d,-e,-f); ==>

4 SPECIFIC TENSORS 40

abec

gd
def

One can force evaluation in terms of the determinant in all cases. To
this end, the switch EXDELT is provided. It is initially OFF. Switching
it On will most often give inconveniently large outputs:

on exdelt;

gd(a,b,c,-d,-e,-f); ==>

a b c a b c
delta *delta *delta - delta =*delta *delta
d e f d f e
a b c a b c
- delta =*delta *delta + delta *delta *delta
e d f e f d
a b c a b c
+ delta *delta *delta - delta =*delta *delta
f d e f e d

In a multi-space environment, it is never necessary to define several
such tensor. The reason is that CANONICAL uses it always from the
contraction of a pair of epsilon-like tensors. Therefore the control of
indices is already done, the space-dimension in which del is working is
also well defined.

4.5 METRIC tensors

Very often, one has to define a specific metric. The metric-type of
tensors include all generic properties. The first one is their symmetry,
the second one is their equality to the delta tensor when they get
mixed indices, the third one is their optional bloc-diagonality. So, a
metric (generic) tensor is generated by the declaration

make_partic_tens(<tensor-name>,metric);

4 SPECIFIC TENSORS 41

By default, when one is working in a multi-space environment, it is de-
fined in wholespace One uses the usual means of REDUCE to give it
specific values. In particular, the metric 'delta’ tensor of the euclidian
space can be defined that way. Implicit or explicit dependences on vari-
ables are allowed. Here is an illustration in the single space environment:

make_partic_tens(g,metric); ==> t
make_partic_tens(delt,delta); ==> t
onespace 7; ==> yes
g(a,b); ==
ab
g
g(b,a); ==>
ab
g

g(a,b,c); ==>

x bad choice of indices for a METRIC tensor

g(a,b,{x,y}); ==>

ab
g (x,y)

gla,-b,{x,z}); ==>
a

delt
b

5 THE SIMPLIFICATION FUNCTION CANONICAL 42

let g({x,y},1,1)=1/2(x+y);

g({x,y},1,1); ==>

rem_value_tens g({x,y},1,1);

g{x,y},1,1); ==>

11
g (x,y)

5 The simplification function CANONICAL

5.1 Tensor expressions

Up to now, we have described the behaviour of individual tensors and
how they simplify themselves whenever possible. However, this is far
from being sufficient. In general, one is to deal with objects which in-
volve several tensors together with various dummy summations between
them. We define a tensor expression as an arbitrary multivariate polyno-
mial. The indeterminates of such a polynomial may be either an indexed
object, an operator, a variable or a rational number. A tensor-type in-
determinate cannot appear to a degree larger than one except if it is a
trace. The following is a tensor expression:

aa:= delt({x - y})*delt(a, - g)*delt(d, - g)*delt(g, -r)

xeps(- d, - e, - f)*eps(a,b,c)*op(x,y) + 1; ==>

5 THE SIMPLIFICATION FUNCTION CANONICAL 43

a d g
aa := delt(x - y)*delt =*delt =*delt =*eps
g g r def
abec
*eps xop(x,y) + 1

In the above expression, delt and eps are, respectively, the delta and
the epsilon tensors, op is an operator. and delt(x-y) is the Dirac
delta function. Notice that the above expression is not cohérent since
the first term has a variance while the second term is a scalar. Moreover,
the dummy index g appears three times in the first term. In fact, on
input, each factor is simplified and each factor is checked for coherence
not more. Therefore, if a dummy summation appears inside one factor,
it will be done whenever possible. Hereunder delt(a,-a) is summed
over:

sub(g=a,aa); ==>
a d abc

delt(x - y)*delt =*delt *eps *eps
r a def

*xop(x,y)*dim + 1

5.2 The use of CANONICAL

CANONICAL is an offspring of the function with the same name of the
package DUMMY . It applies to tensor expressions as defined above. When
it acts, this functions has several features which are worth to realise:

1. It tracks the free indices in each term and checks their identity.
It identifies and verify the coherence of the various dummy index
summations.

5 THE SIMPLIFICATION FUNCTION CANONICAL 44

2.

Dummy indices summations are done on tensor products whenever
possible since it recognises the particular tensors defined above or
defined by the user.

It seeks a canonical form for the various simplified terms, makes
the comparison between them. In that way it maximises simplifi-
cations and generates a canonical form for the output polynomial.

Its capabilities have been extended in four directions:

It is able to work within several spaces.

It manages correctly expressions where formal tensor derivatives
are presentﬁ.

It takes into account all symmetries even if partial.

As its parent function, it can deal with non-commutative and anti-
commutative indexed objects. So, Indexed objects may be spinors
or quantum fields.

We describe most of these features in the rest of this documentation.

5.3

Check of tensor indices

Dummy indices for individual tensors are kept in the memory of the
system. If they are badly distributed over several tensors, it is CANON-
ICAL which gives an error message:

tensor te,tf; ==> t
bb:=te(a,b,b)*te(-b); ==>

abb
bb := te *te

canonical bb; ==>

*x*xxx ((b)(a b b)) are inconsistent lists of indices

3In DUMMY it does not take them into account

5 THE SIMPLIFICATION FUNCTION CANONICAL 45

aa:=te(b,-c)*tf(b,-c); ==>

b b
aa := te *xtf % b and c are free.
c c
canonical aa; ==>
b b
te *tf
c c

bb:=te(a,c,b)*te(-b)*tf(a)$

canonical bb; ==>
ac b a
te *te *tf
b
delt(a,-a); ==> dim % a is now a dummy index
canonical bb; ==>

**xk¥*x wrong use of indices (a)

The message of canonical is clear, the first sublist contains the list of all
lower indices, and the second one the list of all upper indices. The index
b is repeated three times. In the second example, b and ¢ are consid-
ered as free indices, so they may be repeated. The last example shows
the interference between the check on individual tensors and the one of
canonical. The use of a as dummy index inside delt does no longer al-
low a to be used as a free index in expression bb. To be usable, one must

5 THE SIMPLIFICATION FUNCTION CANONICAL 46

explicitly remove it as dummy index using REM_DUMMY _INDICES .
Dans le quatrieme cas, il n’y a pas de probleme puisque b et ¢ sont
tous les deux des indices libres. CANONICAL checks that in a tensor
polynomial all do possess the same variance:

aa:=te(a,c)+x"2; ==>
ac 2
aa := te + X
canonical aa; ==>

*x*x*xx gcalar added with tensor(s)

aa:=te(a,b)+tf(a,c); ==>
ab ac
aa := te + tf
canonical aa; ==>
**xx*x*x mismatch in free indices : ((a c) (a b))

In the message the first two lists of incompatible indices are explicitly
indicated. So, it is not an exhaustive message and a more complete
correction may be needed. Of course, no message of that kind appears
if the indices are inside ordinary operatorsfl

dummy_names b; ==> t
cc:=op(b)*op(a,b,b); ==> cc := op(a,b,b)*op(b)
canonical cc; ==> op(a,b,b)*op(b)

clear_dummy_names; ==> t

4This is the case inside the DUMMY package.

5 THE SIMPLIFICATION FUNCTION CANONICAL 47

5.4 Position and renaming of dummy indices

For a specific tensor, contravariant dummy indices are place in front of
covariant ones. This already leads to some useful simplifications. For
instance:

pp:=te(a,-a)+te(-a,a)+1; ==>
a a
pp := te + te +1
a a
canonical pp; ==>
a
2%te + 1
a

pp:=te(a,-a)+te(-b,b); ==>

b a
pp := te + te
b a
canonical pp; ==>
a
2xte
a

pp:=te(r,a,c,d,-a,f)+te(r,-b,c,d,b,f); ==>

r cdbf racd f
pPp := te + te

5 THE SIMPLIFICATION FUNCTION CANONICAL 48

canonical pp; ==>

racd f
2*te

In the second and third example, there is also a renaming of the dummy
variable b whih becomes a. There is a loophole at this point. For some
expressions one will never reach a stable expression. This is the case for
the following very simple monom:

tensor nt; ==> t
al:=nt(-a,d)*nt(-c,a); ==>
d a
nt *nt

a C

canonical al; ==>

nt *nt

al2:=al-canonical al; ==>

d a ad
al2 := nt *nt - nt *nt

canonical al2; ==>

5 THE SIMPLIFICATION FUNCTION CANONICAL 49

- nt *nt + nt *nt % changes sign.
a c ca

In the above example, no canonical form can be reached. When applied
twice on the tensor monom al it gives back a1!

No change of dummy index position is allowed if a tensor belongs to
an AFFINE space. With the tensor polynomial pp introduced above one
has:

off onespace;

define_spaces aff={dd,affine}; ==> t
make_tensor_belong_space(te,aff); ==> aff
mk_ids_belong_space({a,b},aff); ==> t
canonical pp; ==>

T cdaf racd f
te + te
a a

The renaming of b has been made however.

5.5 Contractions and summations with particular tensors

This is a central part of the extension of CANONICAL. The required
contractions and summations can be done in a multi-space environment
as well in a single space environment.

The case of DELTA

Dummy indices are recognized contracted and summed over whenever
possible:

aa:=delt(a,-b)*delt(b,-c)*delt(c,-a) + 1; ==>

a b c

5 THE SIMPLIFICATION FUNCTION CANONICAL 50

aa := delt *delt x*delt + 1
b c a

canonical aa; ==> dim + 1
aa:=delt(a,-b)*delt(b,-c)*delt(c,-d)*te(d,e)$
canonical aa; ==>

a e
te

CANONICAL will not attempt to make contraction with dummy indices
included inside ordinary operators:

operator op;

aa:=delt(a,-b)*op(b,b)$

canonical aa; ==>

a
delt =*op(b,b)
b

dummy_names b; ==> t
canonical aa; ==>

a
delta =*op(b,b)
b

The case of ETA
First, we introduce ETA:

make_partic_tens(eta,eta); ==> t

5 THE SIMPLIFICATION FUNCTION CANONICAL

signature 1; ==> 1 % necessary
aa:=delta(a,-b)*eta(b,c); ==>
a bc
aa := delt *eta
b
canonical aa; ==>
ac
eta
canonical (eta(a,b)*eta(-b,c)); ==>
ac
eta
canonical (eta(a,b)*eta(-b,-c)); ==>
a
delt
c
canonical(eta(a,b)*eta(-b,-a)); ==> dim
canonical (eta(-a,-b)*te(d,-e,f,b)); ==>
d f
te
e a

aa:=eta(a,b)*eta(-b,-c)*te(-a,c)+1; ==>

o1

5 THE SIMPLIFICATION FUNCTION CANONICAL

ab C
aa := eta *xeta *te + 1
bc a
canonical aa; ==>
a
te + 1
a

aa:=eta(a,b)*eta(-b,-c)*delta(-a,c)+

1+eta(a,b)*eta(-b,-c)*te(-a,c)$

canonical aa; ==>

a
te + dim + 1
a

Let us add a generic metric tensor:

aa:=g(a,b)*g(-b,-d); ==>
ab
aa := g *g
bd
canonical aa; ==>

delt
d

aa:=g(a,b)*g(c,d)*eta(-c,-e)*eta(e,f)*te(-f,g); ==>

ef ab cd g
aa := eta xeta kg kg *te

52

5 THE SIMPLIFICATION FUNCTION CANONICAL 53

c e f
canonical aa; ==>
ab dg

g *xte

The case of EPSILON

The epsilon tensor plays an important role in many contexts. CANONI-
CAL realises the contraction of two epsilons if and only if they belong to
the same space. The proper use of CANONICAL on expressions which
contains it requires a preliminary definition of the tensor DEL. When the
signature is 0; the contraction of two epsilons gives a DEL-like tensor.
When the signature is equal to 1, it is equal to minus a DEL-like tensor.
Here we choose 1 for the signature and we work in a single space. We
define the DEL tensor:

on omnespace;

wholespace_dim dim; ==> dim
make_partic_tens(gd,del); ==> t
signature 1; ==> 1

We define the EPSILON tensor and show how CANONICAI contracts
expression containing twoll of them:

aa:=eps(a,b)*eps(-c,-d); ==>
ab
aa := eps *eps

cd

canonical aa; ==>

5No contractions are done on expressions containing three or more epsilons which
sit in the same space. We are not sure whether it is useful to be more general than
we are presently.

5 THE SIMPLIFICATION FUNCTION CANONICAL 54

ab
_gd
cd
aa:=eps(a,b) *eps(-a,-b); ==>
ab
aa := eps *eps
ab
canonical aa; ==> dim*(- dim + 1)

on exdelt;
gd(-a,-b,a,b); ==> dim*(dim - 1)

aa:=eps(a,b,c)*eps(-b,-d,-e)$

canonical aa; ==>
a c a c
delt *delt *dim - 2*delt *delt -
d e d e
a c a c
- delt *delt *dim + 2*delt * delt
e d e d

Several expressions which contain the epsilon tensor together with other
special tensors are given below as examples to treat with CANONICAL:

aa:=eps(- b, - c)*eta(a,b)*etala,c); ==>

ab ac
eps *eta *eta

5 THE SIMPLIFICATION FUNCTION CANONICAL 55

canonical aa; ==> 0
aa:=eps(a,b,c)*te(-a)*te(-b); ==> I, te is generic.
abc
aa := eps *te *te
a b
canonical aa; ==> 0
tensor tf,tg;
aa::eps(a’b,c)*te(_a) *tf (_b)*tg(_c)
+ eps(d,e,f)*xte(-d)*xtf (-e)*xtg(-£); ==>
canonical aa; ==>
abc
2xeps *te *tf *tg
a b c
aa:=eps(a,b,c)*te(-a)*tf (-c)*tg(-b)

+ eps(d,e,f)*te(-d)*tf(-e)*xtg(-£)$

canonical aa; ==> 0

Since CANONICAL is able to work inside several spaces, we can intro-
duce also several epsilons and make the relevant simplifications on each
(sub)-spaces. This is the goal of the next illustration.

off onespace;
define_spaces wholespace=

{dim,signature=1}; ==> t

5 THE SIMPLIFICATION FUNCTION CANONICAL

define_spaces subspace=
{3,signature=0}; ==> t
show_spaces(); ==>
{{wholespace,dim,signature=1},
{subspace,3,signature=03}}
make_partic_tens(eps,epsilon); ==> t
make_partic_tens(kap,epsilon); ==> t
make_tensor_belong_space(eps,wholespace) ;
==> yholespace
make_tensor_belong_space (kap, subspace) ;
==> subspace
show_epsilons(); ==>
{{eps,wholespace}, {kap, subspace}}
off exdelt;
aa:=kap(a,b,c)*kap(-d,-e,-f)*eps(i, j)*eps(-k,-1)$
canonical aa; ==>
abec ij

- ed *gd
def k1

56

5 THE SIMPLIFICATION FUNCTION CANONICAL o7

If there are no index summation, as in the expression above, one can
develop both terms into the delta tensor with EXDELT switched ON.
In fact, the previous calculation is correct only if there are no dummy
index inside the two gd’s. If some of the indices are dummy, then we
must take care of the respective spaces in which the two gd tensors are
considered. Since, the tensor themselves do not belong to a given space,
the space identification can only be made through the indices. This is
enough since the DELTA-like tensor is bloc-diagonal. With aa the result
of the above illustration, one gets, for example,:

mk_ids_belong_space({a,b,c,d,e,f},wholespace)$
mk_ids_belong_space({i, j,k,1},subspace)$
sub(d=a,e=b,k=1i,aa); ==>

c J 2
2xdelt *delt *(- dim + 3*dim - 2)
f 1

sub(k=1i,1=j,aa); ==>
abc
- 6*gd
def

5.6 CANONICAL and symmetries

Most of the time, indexed objects have some symmetry property. When
this property is either full symmetry or antisymmetry, there is no dif-
ficulty to implement it using the declarations SYMMETRIC or ANTI-
SYMMETRIC of REDUCE. However, most often, indexed objects are
neither fully symmetric nor fully antisymmetric: they have partial or
mized symmetries. In the DUMMY package, the declaration SYMTREE
allows to impose such type of symmetries on operators. This command
has been improved and extended to apply to tensors. In order to illus-
trate it, we shall take the example of the wellknown Riemann tensor in
general relativity. Let us remind the reader that this tensor has four

5 THE SIMPLIFICATION FUNCTION CANONICAL o8

indices. It is separately antisymmetric with respect to the interchange
of the first two indices and with respect to the interchange of the last
two indices. It is symmetric with respect to the interchange of the first
two and the last two indices. In the illustration below, we show how to
express this and how CANONICAL is able to recognize mixed symme-
tries:

tensor r; ==>t
symtree(r,{!+,{!-,1,2},{!-,3,4}});

rem_dummy_indices a,b,c,d; % free indices

ra:=r(b,a,c,d); ==>
bacd

ra :=r

canonical ra; ==>
abcd

-r

ra:=r(c,d,a,b); ==>
cdab
ra :=r

canonical ra; ==>
abcd
r
canonical r(-c,-d,a,b); ==>
ab
T

5 THE SIMPLIFICATION FUNCTION CANONICAL 99

r(-c,-c,a,b); ==> 0
ra:=r(-c,-d,c,b); ==>
cb
ra :=r
cd
canonical ra; ==>
bc
-r
cd

In the last illustration, contravariant indices are placed in front of co-
variant indices and the contravariant indices are transposed. The super-
position of the two partial symmetries gives a minus sign.

There exists an important (though natural) restriction on the use
of SYMTREE which is linked to the algorithm itself: Integer used to
localize indices must start from 1, be contiguous and monotoneously
increasing. For instance, one is not allow to introduce

symtree (r,{!*,{!+,1,3},{!%,2,4}});
symtree(r,{!*,{!+,1,2},{!*,4,5}};

symtree (r,{!*,{!-,1,3},{!%,2}});
but the subsequent declarations are allowed:

symtree (r,{!*,{!+,1,2},{!*,3,4}});
symtree(r,{!*,{!+,1,2},{!%,3,4,5}});

symtree(r,{!*,{!-,1,2},{1%,3}});

The first declaration endows r with a partial symmetry with respect to
the first two indices.

5 THE SIMPLIFICATION FUNCTION CANONICAL 60

A side effect of SYMTREE is to restrict the number of indices of a
generic tensor. For instance, the second declaration in the above illus-
trations makes r depend on 5 indices as illustrated below:

symtree(r,{!*,{!+,1,2},{!*,3,4,5}});
canonical r(-b,-a,d,c); ==>
xx*xxx Index ‘6’ out of range for

((minus b) (minus a) d c) in nth

canonical r(-b,-a,d,c,e); ==>
dce
r % correct
ab
canonical r(-b,-a,d,c,e,g); ==>
dce
r % The sixth index is forgotten!
ab

Finally, the function REMSYM applied on any tensor identifier removes
all symmetry properties.

Another related question is the frequent need to symmetrize a tensor
polynomial. To fulfill it, the function SYMMETRIZE of the package
ASSIST has been improved and generalised. For any kernel (which
may be either an operator or a tensor) that function generates

- the sum over the cyclic permutations of indices,

- the symetric or antisymetric sums over all permutations of the

indices.

Moreover, if it is given a list of indices, it generates a new list which
contains sublists wich contain the relevant permutations of these indices

symmetrize (te(x,y,z,{v}),te,cyclicpermlist); ==>

5 THE SIMPLIFICATION FUNCTION CANONICAL 61

Xy 2z y zx Z Xy
te (v) + te (v) + te)
symmetrize(te(x,y),te,permutations); ==>
Xy y X
te + te

symmetrize(te(x,y),te,permutations,perm_sign); ==>

Xy y X
te - te

symmetrize(te(y,x),te,permutations,perm_sign); ==>
Xy y X
- te + te

If one wants to symmetrise an expression which is not a kernel, one can
also use SYMMETRIZE to obtain the desired result as the next example
shows

ex:=te(a,-b,c)*tel(-a,-d,-e); ==>
a c
ex := te *tel
b ade

11:=1ist(b,c,d,e)$ % the chosen relevant indices
1lls:=symmetrize(11l,list,cyclicpermlist); ==>
1l1s := {{b,c,d,e},{c,d,e,b},{d,e,b,c},{e,b,c,d}}
% The sum over the cyclic permutations is:

excyc:=for each i in 1lls sum

5 THE SIMPLIFICATION FUNCTION CANONICAL 62

sub(b=i.1,c=i.2,d=1.3,e=i.4,ex); ==>

a c a d
excyc := te *tel + te *tel

5.7 CANONICAL and tensor derivatives

Ounly ordinary (partial) derivatives are fully correctly handled by
CANONICAL. This is enough, to explicitly construct covariant deriva-
tives. We recognize here that extensions should still be made. The subse-
quent illustrations show how CANONICAL does indeed manage to find

the canonical form and simplify expressions which contain derivatives.
Notice, the use of the (modified) DEPEND declaration.

on onespace;
tensor te,x; ==>t

depend te,x;

aa:=df (te(a,-b) ,x(-b))-df (te(a,-c),x(-c))$
canonical aa; ==> 0
make_partic_tens(eta,eta); ==> t

signature 1;

5 THE SIMPLIFICATION FUNCTION CANONICAL

aa:=df (te(a,-b),x(-b))$

aa:=aaxeta(-a,-d);

a
aa := df(te ,X)*eta
b b ad
canonical aa; ==>
a a
df (te ,X)

d

63

In the last example, after contraction, the covariant dummy index b has
been changed into the contravariant dummy index a. This is allowed

since the space is metric.

DUMMY, B2

affine, B, 29
anticommutative, @4
ANTISYMMETRIC, 57
antisymmetric, B0
ASSIST, 3, @3,

bloc-diagonal, 23, P4,

CANONICAL, 2, £3, 54, a0, a2,
m3, 68, 63
CANTENS, I, B, @, 22

DEFINE_SPACES, @,

del, 23, BR, b3

delta, 23, P4, PQ, 4, 40, €3, 29
delta function, ZA, B3
DEPEND, @, 62

DF, @

DUMMY, B, B3, 2, 06, 57
dummy, @, I

dummy indices, B3, B4

DUMMY _INDICES, @™

epsilon, 23, B1, €3, b3
eta, 23, 29, B0,
euclidian, B
EXCALC, B

EXDELT, g0, &4

FOR ALL ... LET, I3

generic tensor, [@

64

GLOBAL_SIGN, @, 50, B3

indexrange, @, 20, 22
indices, £4, b7

kernel,
LET,

MAKE_BLOC_DIAGONAL, 27

MAKE_PARTIC_TENS, P4, P4,
B2, g0

MAKE_TENSOR_BELONG_SPACE,
0O, 232, 23,

MAKE_VARIABLES, 9

metric, P4, @0

metric tensor, b2

Minkowski, B, 23,

mixed symmetry, b4

MK_IDS_.BELONG_ANYSPACE,
m, 23

MK_IDS_BELONG_SPACE, [, 23,
b4

numeric indices,

ONESPACE, B, @, [,

onespace OFF, [2, PO, B8, 24,
B0, B4, 29, b3

onespace ON, [2, Y, 24, 29, B3,
b3, 62

OPERATOR,

operator, B3

partial symmetry, B4

REDUCE, I, 2, A

INDEX

REM_DUMMY_IDS, @@
REM_DUMMY _INDICES, @M, g
REM_SPACES, B,
REM_TENSOR, @M
REM_VALUE_TENS, @3, I3
REMOVE_VARIABLES, @
REMSYM,

rewriting rules, [A

Rieman tensor, B4

SHOW _EPSILONS, &4, &4, b3
SHOW_SPACES, g, 20, B2
SIGNATURE,

signature, B, B0, B2, B3, b3
signature, @, b3

space, B

spaces, [, 9, 24, B0, B4, 24, b3
spinor, @4

SUB, 2, B3

subspaces, [@, BT
symbolic indices, 23, B@
SYMMETRIC, b2
symmetric, B0
symmetries, b7
SYMMETRIZE,
SYMTREE, &1

TENSOR, B

tensor contractions, B9
tensor derivatives, B2
tensor polynomial, B2
trace, B2

variables, B, [, [

wholespace, @, B, [, B, B4, &1
WHOLESPACE_DIM, B, &

	Introduction
	Handling of space(s)
	Generic tensors and their manipulation
	Definition
	Implications of TENSOR declaration
	Dummy indices recognition
	Substitutions, assignements and rewriting rules

	Behaviour under space specifications

	Specific tensors
	 DELTA tensor
	ETA Minkowski tensor
	EPSILON tensors
	ONESPACE is ON
	ONESPACE is OFF

	DEL generalized delta tensor
	METRIC tensors

	The simplification function CANONICAL
	Tensor expressions
	The use of CANONICAL
	Check of tensor indices
	Position and renaming of dummy indices
	Contractions and summations with particular tensors
	CANONICAL and symmetries
	CANONICAL and tensor derivatives

