
DFPART: A Package for Calculating with

Derivatives of Generic Functions

H. Melenk

Konrad–Zuse–Zentrum
für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem

Federal Republic of Germany

Email: melenk@zib.de

The package DFPART supports computations with total and partial deriva-
tives of formal function objects. Such computations can be useful in the
context of differential equations or power series expansions.

1 Generic Functions

A generic function is a symbol which represents a mathematical function.
The minimal information about a generic function function is the number
of its arguments. In order to facilitate the programming and for a better
readable output this package assumes that the arguments of a generic func-
tion have default names such as f(x, y),q(rho, phi). A generic function is
declared by prototype form in a statement

GENERIC FUNCTION fname(arg1, arg2 · · · argn);

where fname is the (new) name of a function and argi are symbols for its for-
mal arguments. In the following fname is referred to as “generic function”,
arg1, arg2 · · · argn as “generic arguments” and fname(arg1, arg2 · · · argn) as
“generic form”. Examples:

1

2 PARTIAL DERIVATIVES 2

generic_function f(x,y);
generic_function g(z);

After this declaration REDUCE knows that

• there are formal partial derivatives ∂f
∂x , ∂f

∂y
∂g
∂z and higher ones, while

partial derivatives of f and g with respect to other variables are as-
sumed as zero,

• expressions of the type f(), g() are abbreviations for f(x, y), g(z),

• expressions of the type f(u, v) are abbreviations for
sub(x = u, y = v, f(x, y))

• a total derivative df(u,v)
dw has to be computed as ∂f

∂x
du
dw + ∂f

∂y
dv
dw

2 Partial Derivatives

The operator DFP represents a partial derivative:

DFP(expr, dfarg1, dfarg2 · · · dfargn);

where expr is a function expression and dfargi are the differentiation vari-
ables. Examples:

dfp(f(),{x,y});

means ∂2f
∂x∂y and

dfp(f(u,v),{x,y});

stands for ∂2f
∂x∂y (u, v). For compatibility with the DF operator the differen-

tiation variables need not be entered in list form; instead the syntax of DF
can be used, where the function expression is followed by the differentiation
variables, eventually with repetition numbers. Such forms are interenally
converted to the above form with a list as second parameter.

The expression expr can be a generic function with or without arguments,
or an arithmetic expression built from generic functions and other algebraic
parts. In the second case the standard differentiation rules are applied in
order to reduce each derivative expressions to a minimal form.

When the switch NAT is on partial derivatives of generic functions are printed
in standard index notation, that is fxy for ∂2f

∂x∂y and fxy(u, v) for ∂2f
∂x∂y (u, v).

2 PARTIAL DERIVATIVES 3

Therefore single characters should be used for the arguments whenever pos-
sible. Examples:

generic_function f(x,y);
generic_function g(y);
dfp(f(),x,2);

F
XX

dfp(f()*g(),x,2);

F *G()
XX

dfp(f()*g(),x,y);

F *G() + F *G
XY X Y

The difference between partial and total derivatives is illustrated by the
following example:

generic_function h(x);
dfp(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X))
X

df(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X)) + F (X,H(X))*H (X)*G(H(X))
X Y X

+ G (H(X))*H (X)*F(X,H(X))
Y X

Cooperation of partial derivatives and Taylor series under a differential side
relation dq

dx = f(x, q):

2 PARTIAL DERIVATIVES 4

load_package taylor;
operator q;
let df(q(~x),x) => f(x,q(x));
taylor(q(x0+h),h,0,3);

F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
X Y 2

Q(X0) + F(X0,Q(X0))*H + ---*H
2

+ (F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
XX XY

+ F (X0,Q(X0))*F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
X Y YX

2 2 3
+ F (X0,Q(X0))*F(X0,Q(X0)) + F (X0,Q(X0)) *F(X0,Q(X0)))/6*H

YY Y

4
+ O(H)

Normally partial differentials are assumed as non-commutative

dfp(f(),x,y)-dfp(f(),y,x);

F - F
XY YX

However, a generic function can be declared to have globally interchange-
able partial derivatives using the declaration DFP COMMUTE which takes the
name of a generic function or a generic function form as argument. For
such a function differentiation variables are rearranged corresponding to the
sequence of the generic variables.

generic_function q(x,y);
dfp_commute q(x,y);
dfp(q(),{x,y,y}) + dfp(q(),{y,x,y}) + dfp(q(),{y,y,x});

3 SUBSTITUTIONS 5

3*Q
XYY

If only a part of the derivatives commute, this has to be declared using the
standard REDUCE rule mechanism. Please note that then the derivative
variables must be written as list.

3 Substitutions

When a generic form or a DFP expression takes part in a substitution the
following steps are performed:

1. The substitutions are performed for the arguments. If the argument
list is empty the substitution is applied to the generic arguments of
the function; if these change, the resulting forms are used as new
actual arguments. If the generic function itself is not affected by the
substitution, the process stops here.

2. If the function name or the generic function form occurs as a left hand
side in the substitution list, it is replaced by the corresponding right
hand side.

3. The new form is partially differentiated according to the list of partial
derivative variables.

4. The (eventually modified) actual parameters are substituted into the
form for their corresponding generic variables. This substitution is
done by name.

Examples:

generic_function f(x,y);
sub(y=10,f());

F(X,10)

sub(y=10,dfp(f(),x,2));

F (X,10)
XX

3 SUBSTITUTIONS 6

sub(y=10,dfp(f(y,y),x,2));

F (10,10)
XX

sub(f=x**3*y**3,dfp(f(),x,2));

3
6*X*Y

generic_function ff(y,z);
sub(f=ff,f(a,b));

FF(B,Z)

The dataset dfpart.tst contains more examples, including a complete appli-
cation for computing the coefficient equations for Runge-Kutta ODE solvers.

