
DUMMY

A package to find the canonical form of expressions

involving dummy variables

Version 1.1

Alain Dresse
Université Libre de Bruxelles

Boulevard du Triomphe, CP 210/01
B–1050 BRUXELLES

and

Hubert Caprasse
Université de Liège
Institut de Physique

Allée du 6 août
B–4000 LIEGE

E–mail: hubert.caprasse@ulg.ac.be

1 Introduction

The possibility to handle dummy variables and to manipulate dummy sum-
mations are important features in many applications. In particular, in theo-
retical physics, the possibility to represent complicated expressions concisely
and to realize simplifications efficiently depend on both capabilities. How-
ever, when dummy variables are used, there are many more ways to express
a given mathematical objects since the names of dummy variables may be
chosen almost arbitrarily. Therefore, from the point of view of computer
algebra the simplification problem is much more difficult. Given a definite
ordering, one is, at least, to find a representation which is independent of
the names chosen for the dummy variables otherwise, simplifications are

1

2 DUMMY VARIABLES AND DUMMY SUMMATIONS 2

impossible. The package does handle any number of dummy variables and
summations present in expressions which are arbitrary multivariate poly-
nomials and which have operator objects eventually dependent on one (or
several) dummy variable(s) as some of their indeterminates. These operators
have the same generality as the one existing in REDUCE. They can be non-
commutative, anticommutative or commutative. They can have any kind of
symmetry property. Such polynomials will be called in the following dummy
polynomials. Any monomial of this kind will be called dummy monomial.
For any such object, the package allows to find a well defined normal form
in one-to-one correspondance with it.

In section 2, the convention for writing dummy summations is explained
and the available declarations to introduce or suppress dummy variables are
given.

In section 3, the commands allowing to give various algebraic properties to
the operators are described.

In section 4, the use of the function CANONICAL is explained and illustrated.

In section 5, a fairly complete set of references is given.

The use of DUMMY requires that the package ASSIST version 2.2 be avail-
able. This is the case when REDUCE 3.6 is used. When loaded, ASSIST is
automatically loaded.

2 Dummy variables and dummy summations

A dummy variable (let us name it dv) is an identifier which runs from the
integer i1 to another integer i2. To the extent that no definite space is
defined, i1 and i2 are assumed to be some integers which are the same for
all dummy variables.

If f is any REDUCE operator, then the simplest dummy summation associated
to dv is the sum

i2∑

dv=i1

f(dv)

and is simply written as
f(dv).

No other rules govern the implicit summations. dv can appear as many

2 DUMMY VARIABLES AND DUMMY SUMMATIONS 3

times we want since the operator f may depend on an arbitrary number of
variables. So, the package is potentially applicable to many contexts. For
instance, it is possible to add rules of the kind one encounters in tensor
calculus.

Obviously, there are as many ways we want to express the same quantity. If
the name of another dummy variable is dum then the previous expression
is written as

i2∑

dum=i1

f(dum)

and the computer algebra system should be able to find that the expression

f(dv)− f(dum);

is equal to 0. A very special case which is allowed is when f is the iden-
tity operator. So, a generic dummy polynomial will be a sum of dummy
monomials of the kind

∏

i

ci ∗ fi(dv1, . . . , dvki
, fr1, . . . , frli)

where dv1, . . . , are dummy variables while fr1, . . . , are ordinary or free vari-
ables.

To declare dummy variables, two commands are available:

• i.

dummy_base <idp>;

where idp is the name of any unassigned identifier.

• ii.

dummy_names <d>,<dp>,<dpp>;

The first one declares idp1, . . . , idpn as dummy variables i.e. all variables
of the form idpxxx where xxx is a number will be dummy variables, such
as idp1, idp2, . . . , idp23. The second one gives special names for dummy
variables. All other identifiers which may appear are assumed to be free.
However, there is a restriction: named and base dummy variables cannot
be declared simultaneously. The above declarations are mutually exclusive.
Here is an example showing that:

3 THE OPERATORS AND THEIR PROPERTIES 4

dummy_base dv; ==> dv

% dummy indices are dv1, dv2, dv3, ...

dummy_names i,j,k; ==>

***** The created dummy base dv must be cleared

When this is done, an expression like

op(dv1)*sin(dv2)*abs(i)*op(dv2)$

means a sum over dv1, dv2. To clear the dummy base, and to create the
dummy names i, j, k one is to do

clear_dummy_base; ==> t

dummy_names i,j,k; ==> t

% dummy indices are i,j,k.

When this is done, an expression like

op(dv1)*sin(dv2)*abs(x)*op(i)^3*op(dv2)$

means a sum over i. One should keep in mind that every application of the
above commands erases the previous ones. It is also possible to display the
declared dummy names using SHOW DUMMY NAMES:

show_dummy_names(); ==> {i,j,k}

To suppress all dummy variables one can enter

clear_dummy_names; clear_dummy_base;

3 The Operators and their Properties

All dummy variables should appear at first level as arguments of operators.
For instance, if i and j are dummy variables, the expression

rr:= op(i,j)-op(j,j)

3 THE OPERATORS AND THEIR PROPERTIES 5

is allowed but the expression

op(i,op(j)) - op(j,op(j))

is not allowed. This is because dummy variables are not detected if they
appear at a level larger than 1. Apart from that there is no restrictions.
Operators may be commutative, noncommutative or even anticommutative.
Therefore they may be elements of an algebra, they may be tensors, spinors,
grassman variables, etc. . . . By default they are assumed to be commutative
and without symmetry properties. The REDUCE command NONCOM is taken
into account and, in addition, the command

anticom at1, at2;

makes the operators at1 and at2 anticommutative.

One can also give symmetry properties to them. The usual declarations
SYMMETRIC and ANTISYMMETRIC are taken into account. Moreover and most
important they can be endowed with a partial symmetry through the com-
mand SYMTREE. Here are three illustrative examples for the r operator:

symtree (r,{!+, 1, 2, 3, 4});
symtree (r,{!*, 1, {!-, 2, 3, 4}});
symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

The first one makes the operator (fully) symmetric. The second one declares
it antisymmetric with respect to the three last indices. The symbols !*, !+
and !- at the beginning of each list mean that the operator has no symmetry,
is symmetric or is antisymmetric with respect to the indices inside the list.
Notice that the indices are not denoted by their names but merely by their
natural order of appearance. 1 means the first written argument of r, 2 its
second argument etc. The first command is equivalent to the declaration
symmetric except that the number of indices of r is restricted to 4 i.e. to
the number declared in SYMTREE. In the second example r is stated to have
no symmetry with respect to the first index and is declared to be antisym-
metric with respect to the three last indices. In the third example, r is
made symmetric with respect to the interchange of the pairs of indices 1,2
and 3,4 respectively and is made antisymmetric separately within the pairs
(1, 2) and (3, 4). It is the symmetry of the Riemann tensor. The anticom-
mutation property and the various symmetry properties may be suppressed
by the commands REMANTICOM and REMSYM. To eliminate partial symmetry
properties one can also use SYMTREE itself. For example, assuming that r

4 THE FUNCTION CANONICAL 6

has the Riemann symmetry, to eliminate it do

symtree (r,{!*, 1, 2, 3, 4});

However, notice that the number of indices remains fixed and equal to 4
while with REMSYM it becomes again arbitrary.

4 The Function CANONICAL

CANONICAL is the most important functionality of the package. It can be
applied on any polynomial whether it is a dummy polynommial or not. It
returns a normal form uniquely determined from the current ordering of the
system. If the polynomial does not contain any dummy index, it is rewriten
taking into account the various operator properties or symmetries described
above. For instance,

symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

aa:=r(x3,x4,x2,x1)$

canonical aa; ==> - r(x1,x2,x3,x4).

If it contains dummy indices, CANONICAL takes also into account the various
dummy summations, makes the relevant simplifications, eventually rename
the dummy indices and returns the resulting normal form. Here is a simple
example:

operator at1,at2;
anticom at1,at2;

dummy_names i,j,k; ==> t

show_dummy_names(); ==> {i,j,k}

rr:=at1(i)*at2(k) -at2(k)*at1(i)$

canonical rr; => 2*at1(i)*at2(j)

It is important to notice, in the above example, that in addition to the
summations over indices i and k, and of the anticommutativity property of

5 BIBLIOGRAPHY 7

the operators, canonical has replaced the index k by the index j. This
substitution is essential to get full simplification. Several other examples
are given in the test file and, there, the output of CANONICAL is explained.

As stated in the previous section, the dependence of operators on dummy
indices is limited to first level. An erroneous result will be generated if it is
not the case as the subsequent example illustrates:

operator op;

dummy_names i,j;

rr:=op(i,op(j))-op(j,op(j))$

canonical rr; ==> 0

Zero is obtained because, in the second term, CANONICAL has replaced j by
i but has left op(j) unchanged because it does not see the index j which
is inside. This fact has also the consequence that it is unable to simplify
correctly (or at all) expressions which contain some derivatives. For instance
(i and j are dummy indices):

aa:=df(op(x,i),x) -df(op(x,j),x)$

canonical aa; ==> df(op(x,i),x) - df(op(x,j),x)

instead of zero. A second limitation is that CANONICAL does not add anything
to the problem of simplifications when side relations (like Bianchi identities)
are present.

5 Bibliography

- Butler, G. and Lam, C. W. H., “A general backtrack algorithm for
the isomorphism problem of combinatorial objects”, J. Symb. Com-
put. vol.1, (1985) p.363-381.

- Butler, G. and Cannon, J. J., “Computing in Permutation and
Matrix Groups I: Normal Closure, Commutator Subgroups, Series”,
Math. Comp. vol.39, number 60, (1982), p. 663-670.

- Butler, G., “Computing in Permutation and Matrix Groups II: Back-
track Algorithm”, Math. Comp. vol.39, number 160, (1982), p.671-

5 BIBLIOGRAPHY 8

680.
- Leon, J.S., “On an Algorithm for Finding a Base and a Strong

Generating Setfor a Group Given by Generating Permutations”, Math.
Comp. vol.35, (1980), p941-974.

- Leon, J. S., “Computing Automorphism Groups of Combinato-
rial Objects”, Proc. LMS Symp. on Computational Group Theory,
Durham, England, editor: Atkinson, M. D., Academic Press, London,
(1984).

- Leon, J. S., “Permutation Group Algorithms Based on Partitions, I:
Theory and Algorithms”, J.Symb. Comput.vol.12, (1991) p. 533-583.

- Linton, Stephen Q., “Double Coset Enumeration”, J. Symb. Com-
put., vol.12, (1991) p. 415-426.

- McKay, B. D., “Computing Automorphism Groups and Canoni-
cal Labellings of Graphs”, Proc. Internat. Conf. on Combinatorial
Theory, Lecture Notes in Mathematics“ vol. 686, (1977), p.223-232,
Springer-Verlag, Berlin.

- Rodionov, A. Ya. and Taranov, A. Yu., “Combinatorial Aspects
of Simplification of Algebraic Expression”, Proceedings of Eurocal 87,
Lecture Notes in Comp. Sci., vol. 378, (1989), p. 192.

- Sims, C. C., “Determining the Conjugacy Classes of a Permutation
Group”, Computers in Algebra and Number Theory, SIAM-AMS Pro-
ceedings, vol. 4, (1971), p. 191-195, editor G. Birckhoff and M. Hall
Jr., Amer. Math. Soc..

- Sims, C. C., “Computation with Permutation Groups”, Proc. of the
Second Symposium on Symbolic and Algebraic Manipulation, (1971),
p. 23-28, editor S. R. Petrick, Assoc. Comput. Mach., New York.

- Burnel A., Caprasse H., Dresse A., “ Computing the BRST
operator used in Quantization of Gauge Theories” IJMPC vol. 3,
(1993) p.321-35.

- Caprasse H., “BRST charge and Poisson Algebras”, Discrete Math-
ematics and Theoretical Computer Science, Special Issue: Lie Com-
putations papers, http://dmtcs.thomsonscience.com, (1997).

