
EXCALC: A System for Doing Calculations in the

Calculus of Modern Differential Geometry

Eberhard Schrüfer
Institute SCAI.Alg

German National Research Center for Information Technology (GMD)
Schloss Birlinghoven

D-53754 Sankt Augustin
Germany

Email: schruefer@gmd.de

March 20, 2004

Acknowledgments

This program was developed over several years. I would like to express
my deep gratitude to Dr. Anthony Hearn for his continuous interest in this
work, and especially for his hospitality and support during a visit in 1984/85
at the RAND Corporation, where substantial progress on this package could
be achieved. The Heinrich Hertz-Stiftung supported this visit. Many thanks
are also due to Drs. F.W. Hehl, University of Cologne, and J.D. McCrea,
University College Dublin, for their suggestions and work on testing this
program.

1 Introduction

EXCALC is designed for easy use by all who are familiar with the calculus
of Modern Differential Geometry. Its syntax is kept as close as possible
to standard textbook notations. Therefore, no great experience in writing
computer algebra programs is required. It is almost possible to input to
the computer the same as what would have been written down for a hand-

1

2 DECLARATIONS 2

calculation. For example, the statement

f*x^y + u _| (y^z^x)

would be recognized by the program as a formula involving exterior products
and an inner product. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar
valued forms (indexed forms). With this, it should be an ideal tool for
studying differential equations, doing calculations in general relativity and
field theories, or doing such simple things as calculating the Laplacian of a
tensor field for an arbitrary given frame. With the increasing popularity of
this calculus, this program should have an application in almost any field of
physics and mathematics.

Since the program is completely embedded in REDUCE, all features and
facilities of REDUCE are available in a calculation. Even for those who are
not quite comfortable in this calculus, there is a good chance of learning it
by just playing with the program.

This is the last release of version 2. A much extended differential geometry
package (which includes complete symbolic index simplification, tensors,
mappings, bundles and others) is under development.

Complaints and comments are appreciated and should be send to the author.
If the use of this program leads to a publication, this document should be
cited, and a copy of the article to the above address would be welcome.

2 Declarations

Geometrical objects like exterior forms or vectors are introduced to the
system by declaration commands. The declarations can appear anywhere
in a program, but must, of course, be made prior to the use of the object.
Everything that has no declaration is treated as a constant; therefore zero-
forms must also be declared.

An exterior form is introduced by

PFORM <declaration1>, <declaration2>, . . . ;

where

<declaration> ::= <name> | <list of names>=<number> | <identifier> |

2 DECLARATIONS 3

<expression>
<name> ::= <identifier> | <identifier>(<arguments>)

For example

pform u=k,v=4,f=0,w=dim-1;

declares U to be an exterior form of degree K, V to be a form of degree 4, F
to be a form of degree 0 (a function), and W to be a form of degree DIM-1.

If the exterior form should have indices, the declaration would be

pform curv(a,b)=2,chris(a,b)=1;

The names of the indices are arbitrary.

Exterior forms of the same degree can be grouped into lists to save typing.

pform {x,y,z}=0,{rho(k,l),u,v(k)}=1;

The declaration of vectors is similar. The command TVECTOR takes a list of
names.

TVECTOR <name1>, <name2>, . . . ;

For example, to declare X as a vector and COMM as a vector with two indices,
one would say

tvector x,comm(a,b);

If a declaration of an already existing name is made, the old declaration is
removed, and the new one is taken.

The exterior degree of a symbol or a general expression can be obtained
with the function

EXDEGREE <expression>;

Example:

exdegree(u + 3*chris(k,-k));

1

3 EXTERIOR MULTIPLICATION 4

3 Exterior Multiplication

Exterior multiplication between exterior forms is carried out with the nary
infix operator ˆ (wedge). Factors are ordered according to the usual ordering
in REDUCE using the commutation rule for exterior products.

Example 1

pform u=1,v=1,w=k;

u^v;

U^V

v^u;

- U^V

u^u;

0

w^u^v;

K
(- 1) *U^V^W

(3*u-a*w)^(w+5*v)^u;

A*(5*U^V^W - U^W^W)

It is possible to declare the dimension of the underlying space by

SPACEDIM <number> | <identifier>;

If an exterior product has a degree higher than the dimension of the space,
it is replaced by 0:

spacedim 4;

pform u=2,v=3;

4 PARTIAL DIFFERENTIATION 5

u^v;

0

4 Partial Differentiation

Partial differentiation is denoted by the operator @. Its capability is the
same as the REDUCE DF operator.

Example 2

@(sin x,x);

COS(X)

@(f,x);

0

An identifier can be declared to be a function of certain variables. This
is done with the command FDOMAIN. The following would tell the partial
differentiation operator that F is a function of the variables X and Y and
that H is a function of X.

fdomain f=f(x,y),h=h(x);

Applying @ to F and H would result in

@(x*f,x);

F + X*@ F
X

@(h,y);

0

The partial derivative symbol can also be an operator with a single argu-
ment. It then represents a natural base element of a tangent vector.

Example 3

5 EXTERIOR DIFFERENTIATION 6

a*@ x + b*@ y;

A*@ + B*@
X Y

5 Exterior Differentiation

Exterior differentiation of exterior forms is carried out by the operator d.
Products are normally differentiated out, i.e.

pform x=0,y=k,z=m;

d(x * y);

X*d Y + d X^Y

d(r*y);

R*d Y

d(x*y^z);

K
(- 1) *X*Y^d Z + X*d Y^Z + d X^Y^Z

This expansion can be suppressed by the command NOXPND D.

noxpnd d;

d(y^z);

d(Y^Z)

To obtain a canonical form for an exterior product when the expansion is
switched off, the operator D is shifted to the right if it appears in the leftmost
place.

d y ^ z;

K

5 EXTERIOR DIFFERENTIATION 7

- (- 1) *Y^d Z + d(Y^Z)

Expansion is performed again when the command XPND D is executed.

Functions which are implicitly defined by the FDOMAIN command are ex-
panded into partial derivatives:

pform x=0,y=0,z=0,f=0;

fdomain f=f(x,y);

d f;

@ F*d X + @ F*d Y
X Y

If an argument of an implicitly defined function has further dependencies
the chain rule will be applied e.g.

fdomain y=y(z);

d f;

@ F*d X + @ F*@ Y*d Z
X Y Z

Expansion into partial derivatives can be inhibited by NOXPND @ and enabled
again by XPND @.

The operator is of course aware of the rules that a repeated application
always leads to zero and that there is no exterior form of higher degree than
the dimension of the space.

d d x;

0

pform u=k;
spacedim k;

d u;

0

6 INNER PRODUCT 8

6 Inner Product

The inner product between a vector and an exterior form is represented
by the diphthong | (underscore or-bar), which is the notation of many
textbooks. If the exterior form is an exterior product, the inner product is
carried through any factor.

Example 4

pform x=0,y=k,z=m;

tvector u,v;

u _| (x*y^z);

K
X*((- 1) *Y^U _| Z + U _| Y^Z)

In repeated applications of the inner product to the same exterior form the
vector arguments are ordered e.g.

(u+x*v) _| (u _| (3*z));

- 3*U _| V _| Z

The duality of natural base elements is also known by the system, i.e.

pform {x,y}=0;

(a*@ x+b*@(y)) _| (3*d x-d y);

3*A - B

7 Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or
between two vectors. It is represented by the infix operator | . In the
case of Lie differentiating, an exterior form by a vector, the Lie derivative is
expressed through inner products and exterior differentiations, i.e.

pform z=k;

8 HODGE-* DUALITY OPERATOR 9

tvector u;

u |_ z;

U _| d Z + d(U _| Z)

If the arguments of the Lie derivative are vectors, the vectors are ordered
using the anticommutivity property, and functions (zero forms) are differ-
entiated out.

Example 5

tvector u,v;

v |_ u;

- U |_ V

pform x=0,y=0;

(x*u) |_ (y*v);

- U*Y*V _| d X + V*X*U _| d Y + X*Y*U |_ V

8 Hodge-* Duality Operator

The Hodge-* duality operator maps an exterior form of degree K to an
exterior form of degree N-K, where N is the dimension of the space. The
double application of the operator must lead back to the original exterior
form up to a factor. The following example shows how the factor is chosen
here

spacedim n;
pform x=k;

x;

2
(K + K*N)

8 HODGE-* DUALITY OPERATOR 10

(- 1) *X*SGN

9 VARIATIONAL DERIVATIVE 11

The indeterminate SGN in the above example denotes the sign of the de-
terminant of the metric. It can be assigned a value or will be automatically
set if more of the metric structure is specified (via COFRAME), i.e. it is
then set to g/|g|, where g is the determinant of the metric. If the Hodge-*
operator appears in an exterior product of maximal degree as the leftmost
factor, the Hodge-* is shifted to the right according to

pform {x,y}=k;

x ^ y;

2
(K + K*N)

(- 1) *X^# Y

More simplifications are performed if a coframe is defined.

9 Variational Derivative

The function VARDF returns as its value the variation of a given Lagrangian
n-form with respect to a specified exterior form (a field of the Lagrangian).
In the shared variable BNDEQ!*, the expression is stored that has to yield
zero if integrated over the boundary.

Syntax:

VARDF(<Lagrangian n-form>,<exterior form>)

Example 6

spacedim 4;

pform l=4,a=1,j=3;

l:=-1/2*d a ^ # d a - a^# j$ %Lagrangian of the e.m. field

vardf(l,a);

- (# J + d # d A) %Maxwell’s equations

bndeq!*;

10 HANDLING OF INDICES 12

- ’A^# d A %Equation at the boundary

Restrictions:

In the current implementation, the Lagrangian must be built up by the fields
and the operations d, #, and @. Variation with respect to indexed quantities
is currently not allowed.

For the calculation of the conserved currents induced by symmetry operators
(vector fields), the function NOETHER is provided. It has the syntax:

NOETHER(<Lagrangian n-form>,<field>,<symmetry generator>)

Example 7

pform l=4,a=1,f=2;

spacedim 4;

l:= -1/2*d a^#d a; %Free Maxwell field;

tvector x(k); %An unspecified generator;

noether(l,a,x(-k));

(- 2*d(X _|A)^# d A - (X _|d A)^# d A + d A^(X _|# d A))/2
K K K

The above expression would be the canonical energy momentum 3-forms of
the Maxwell field, if X is interpreted as a translation;

10 Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are given
as arguments of the object. A positive argument denotes a superscript and a
negative argument a subscript. On output, the indexed quantity is displayed
two dimensionally if NAT is on. Indices may be identifiers or numbers.

Example 8

pform om(k,l)=m,e(k)=1;

10 HANDLING OF INDICES 13

e(k)^e(-l);

K
E ^E

L

om(4,-2);

4
OM

2

In the current release, full simplification is performed only if an index range
is specified. It is hoped that this restriction can be removed soon. If the
index range (the values that the indices can obtain) is specified, the given
expression is evaluated for all possible index values, and the summation
convention is understood.

Example 9

indexrange t,r,ph,z;

pform e(k)=1,s(k,l)=2;

w := e(k)*e(-k);

T R PH Z
W := E *E + E *E + E *E + E *E

T R PH Z

s(k,l):=e(k)^e(l);

T T
S := 0

R T T R
S := - E ^E

10 HANDLING OF INDICES 14

PH T T PH
S := - E ^E

.

.

.

If the expression to be evaluated is not an assignment, the values of the
expression are displayed as an assignment to an indexed variable with name
NS. This is done only on output, i.e. no actual binding to the variable NS
occurs.

e(k)^e(l);

T T
NS := 0

R T T R
NS := - E ^E
.
.
.

It should be noted, however, that the index positions on the variable NS can
sometimes not be uniquely determined by the system (because of possible
reorderings in the expression). Generally it is advisable to use assignments
to display complicated expressions.

A range can also be assigned to individual index-names. For example, the
declaration

indexrange {k,l}={x,y,z},{u,v,w}={1,2};

would assign to the index identifiers k,l the range values x,y,z and to the
index identifiers u,v,w the range values 1,2. The use of an index identifier
not listed in previous indexrange statements has the range of the union of
all given index ranges.

With the above example of an indexrange statement, the following index
evaluations would take place

pform w n=0;

10 HANDLING OF INDICES 15

w(k)*w(-k);

X Y Z
W *W + W *W + W *W
X Y Z

w(u)*w(-u);

1 2
W *W + W *W
1 2

w(r)*w(-r);

1 2 X Y Z
W *W + W *W + W *W + W *W + W *W
1 2 X Y Z

In certain cases, one would like to inhibit the summation over specified index
names, or at all. For this the command

NOSUM <indexname1>, . . . ;

and the switch NOSUM are available. The command NOSUM has the effect
that summation is not performed over those indices which had been listed.
The command RENOSUM enables summation again. The switch NOSUM, if on,
inhibits any summation.

It is possible to declare symmetry properties for an indexed quantity by the
command INDEX SYMMETRIES. A prototypical example is as follows

index_symmetries u(k,l,m,n): symmetric in {k,l},{m,n}
antisymmetric in {{k,l},{m,n}},

g(k,l),h(k,l): symmetric;

It declares the object u symmetric in the first two and last two indices and
antisymmetric with respect to commutation of the given index pairs. If an
object is completely symmetric or antisymmetric, the indices need not to be
given after the corresponding keyword as shown above for g and h.

11 METRIC STRUCTURES 16

If applicable, this command should be issued, since great savings in memory
and execution time result. Only strict components are printed.

The commands symmetric and antisymmetric of earlier releases have no
effect.

11 Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-
forms (the coframe) together with the metric.

Syntax:

COFRAME <identifier><(index1)>=<expression1>,
<identifier><(index2)>=<expression2>,
.
.
.
<identifier><(indexn)>=<expressionn>

WITH METRIC <name>=<expression>;

This statement automatically sets the dimension of the space and the index
range. The clause WITH METRIC can be omitted if the metric is Euclidean
and the shorthand WITH SIGNATURE <diagonal elements> can be used in
the case of a pseudo-Euclidean metric. The splitting of a metric structure
in its metric tensor coefficients and basis one-forms is completely arbitrary
including the extremes of an orthonormal frame and a coordinate frame.

Example 10

coframe e r=d r, e(ph)=r*d ph
with metric g=e(r)*e(r)+e(ph)*e(ph); %Polar coframe

coframe e(r)=d r,e(ph)=r*d(ph); %Same as before

coframe o(t)=d t, o x=d x
with signature -1,1; %A Lorentz coframe

coframe b(xi)=d xi, b(eta)=d eta %A lightcone coframe
with metric w=-1/2*(b(xi)*b(eta)+b(eta)*b(xi));

11 METRIC STRUCTURES 17

coframe e r=d r, e ph=d ph %Polar coordinate
with metric g=e r*e r+r**2*e ph*e ph; %basis

Individual elements of the metric can be accessed just by calling them with
the desired indices. The value of the determinant of the covariant metric
is stored in the variable DETM!*. The metric is not needed for lowering or
raising of indices as the system performs this automatically, i.e. no matter in
what index position values were assigned to an indexed quantity, the values
can be retrieved for any index position just by writing the indexed quantity
with the desired indices.

Example 11

coframe e t=d t,e x=d x,e y=d y
with signature -1,1,1;

pform f(k,l)=0;

antisymmetric f;

f(-t,-x):=ex$ f(-x,-y):=b$ f(-t,-y):=0$
on nero;

f(k,-l):=f(k,-l);

X
F := - EX

T

T
F := - EX

X

Y
F := - B

X

X

11 METRIC STRUCTURES 18

F := B
Y

Any expression containing differentials of the coordinate functions will be
transformed into an expression of the basis one-forms.The system also knows
how to take the exterior derivative of the basis one-forms.

Example 12(Spherical coordinates)

coframe e(r)=d(r), e(th)=r*d(th), e(ph)=r*sin(th)*d(ph);

d r^d th;

R TH
(E ^E)/R

d(e(th));

R TH
(E ^E)/R

pform f=0;

fdomain f=f(r,th,ph);

factor e;

on rat;

d f; %The "gradient" of F in spherical coordinates;

R TH PH
E *@ F + (E *@ F)/R + (E *@ F)/(R*SIN(TH))

R TH PH

The frame dual to the frame defined by the COFRAME command can be in-
troduced by FRAME command.

FRAME <identifier>;

This command causes the dual property to be recognized, and the tangent

11 METRIC STRUCTURES 19

vectors of the coordinate functions are replaced by the frame basis vectors.

Example 13

coframe b r=d r,b ph=r*d ph,e z=d z; %Cylindrical coframe;

frame x;

on nero;

x(-k) _| b(l);

R
NS := 1
R

PH
NS := 1
PH

Z
NS := 1

Z

x(-k) |_ x(-l); %The commutator of the dual frame;

NS := X /R
PH R PH

NS := (- X)/R %i.e. it is not a coordinate base;
R PH PH

As a convenience, the frames can be displayed at any point in a program by
the command DISPLAYFRAME;.

The Hodge-* duality operator returns the explicitly constructed dual ele-
ment if applied to coframe base elements. The metric is properly taken into
account.

12 RIEMANNIAN CONNECTIONS 20

The total antisymmetric Levi-Cevita tensor EPS is also available. The value
of EPS with an even permutation of the indices in a covariant position is
taken to be +1.

12 Riemannian Connections

The command RIEMANNCONX is provided for calculating the connection 1
forms. The values are stored on the name given to RIEMANNCONX. This
command is far more efficient than calculating the connection from the dif-
ferential of the basis one-forms and using inner products.

Example 14(Calculate the connection 1-form and curvature 2-form on S(2))

coframe e th=r*d th,e ph=r*sin(th)*d ph;

riemannconx om;

om(k,-l); %Display the connection forms;

TH
NS := 0

TH

PH PH
NS := (E *COS(TH))/(SIN(TH)*R)

TH

TH PH
NS := (- E *COS(TH))/(SIN(TH)*R)

PH

PH
NS := 0

PH

pform curv(k,l)=2;

13 ORDERING AND STRUCTURING 21

curv(k,-l):=d om(k,-l) + om(k,-m)^om(m-l);
%The curvature forms

TH
CURV := 0

TH

PH TH PH 2
CURV := (- E ^E)/R

TH %Of course it was a sphere with
%radius R.

TH TH PH 2
CURV := (E ^E)/R

PH

PH
CURV := 0

PH

13 Ordering and Structuring

The ordering of an exterior form or vector can be changed by the command
FORDER. In an expression, the first identifier or kernel in the arguments of
FORDER is ordered ahead of the second, and so on, and ordered ahead of
all not appearing as arguments. This ordering is done on the internal level
and not only on output. The execution of this statement can therefore
have tremendous effects on computation time and memory requirements.
REMFORDER brings back standard ordering for those elements that are listed
as arguments.

An expression can be put in a more structured form by renaming a subex-
pression. This is done with the command KEEP which has the syntax

KEEP <name1>=<expression1>,<name2>=<expression2>, . . .

The effect is that rules are set up for simplifying <name> without intro-
ducing its definition in an expression. In an expression the system also tries
by reordering to generate as many instances of <name> as possible.

14 SUMMARY OF OPERATORS AND COMMANDS 22

Example 15

pform x=0,y=0,z=0,f=0,j=3;

keep j=d x^d y^d z;

j;

J

d j;

0

j^d x;

0

fdomain f=f(x);

d f^d y^d z;

@ F*J
X

The capabilities of KEEP are currently very limited. Only exterior products
should occur as righthand sides in KEEP.

14 Summary of Operators and Commands

Table 1 summarizes EXCALC commands and the page number they are
defined on.

14 SUMMARY OF OPERATORS AND COMMANDS 23

ˆ Exterior Multiplication 4
@ Partial Differentiation 5
@ Tangent Vector 5
Hodge-* Operator 9
| Inner Product 8
| Lie Derivative 8
COFRAME Declaration of a coframe 16
d Exterior differentiation 6
DISPLAYFRAME Displays the frame 19
EPS Levi-Civita tensor 20
EXDEGREE Calculates the exterior degree of an expression 3
FDOMAIN Declaration of implicit dependencies 5
FORDER Ordering command 21
FRAME Declares the frame dual to the coframe 18
INDEXRANGE Declaration of indices 13
INDEX SYMMETRIES Declares arbitrary index symmetry properties 15
KEEP Structuring command 21
METRIC Clause of COFRAME to specify a metric 16
NOETHER Calculates the Noether current 12
NOSUM Inhibits summation convention 15
NOXPND d Inhibits the use of product rule for d 6
NOXPND @ Inhibits expansion into partial derivatives 7
PFORM Declaration of exterior forms 2
REMFORDER Clears ordering 21
RENOSUM Enables summation convention 15
RIEMANNCONX Calculation of a Riemannian Connection 20
SIGNATURE Clause of COFRAME to specify a pseudo- 16

Euclidean metric
SPACEDIM Command to set the dimension of a space 4
TVECTOR Declaration of vectors 3
VARDF Variational derivative 11
XPND d Enables the use of product rule for d 7

(default)
XPND @ Enables expansion into partial derivatives 7

(default)

Table 1: EXCALC Command Summary

15 EXAMPLES 24

15 Examples

The following examples should illustrate the use of EXCALC. It is not
intended to show the most efficient or most elegant way of stating the prob-
lems; rather the variety of syntactic constructs are exemplified. The exam-
ples are on a test file distributed with EXCALC.

% Problem: Calculate the PDE’s for the isovector of the heat equation.
% --------
% (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach...",
% J. Math. Phys. 12, 653, 1971)

% The heat equation @ psi = @ psi is equivalent to the set of exterior
% xx t

% equations (with u=@ psi, y=@ psi):
% T x

pform {psi,u,x,y,t}=0,a=1,{da,b}=2;

a := d psi - u*d t - y*d x;

da := - d u^d t - d y^d x;

b := u*d x^d t - d y^d t;

% Now calculate the PDE’s for the isovector.

tvector v;

pform {vpsi,vt,vu,vx,vy}=0;
fdomain vpsi=vpsi(psi,t,u,x,y),vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),

vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);

v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;

factor d;
on rat;

i1 := v |_ a - l*a;

15 EXAMPLES 25

pform o=1;

o := ot*d t + ox*d x + ou*d u + oy*d y;

fdomain f=f(psi,t,u,x,y);

i11 := v _| d a - l*a + d f;

let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),vy=@(f,x)+y*@(f,psi),
vpsi=f-u*@(f,u)-y*@(f,y);

factor ^;

i2 := v |_ b - xi*b - o^a + zeta*da;

let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);

i2;

let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;

i2;

let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);

i2;

let @(f,u,u)=0;

i2; % These PDE’s have to be solved.

clear a,da,b,v,i1,i11,o,i2,xi,t;
remfdomain f,vpsi,vt,vu,vx,vy;
clear @(f,u,u);

% Problem:
% --------
% Calculate the integrability conditions for the system of PDE’s:
% (c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics"
% Cambridge University Press, 1984, p. 156)

15 EXAMPLES 26

% @ z /@ x + a1*z + b1*z = c1
% 1 1 2

% @ z /@ y + a2*z + b2*z = c2
% 1 1 2

% @ z /@ x + f1*z + g1*z = h1
% 2 1 2

% @ z /@ y + f2*z + g2*z = h2
% 2 1 2 ;

pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
{a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;

fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);

a:=a1*d x+a2*d y$
b:=b1*d x+b2*d y$
c:=c1*d x+c2*d y$
f:=f1*d x+f2*d y$
g:=g1*d x+g2*d y$
h:=h1*d x+h2*d y$

% The equivalent exterior system:
factor d;
w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
indexrange 1,2;
factor z;
% The integrability conditions:

integ(k) := d w(k) ^ w(1) ^ w(2);

clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;

% Problem:

15 EXAMPLES 27

% --------
% Calculate the PDE’s for the generators of the d-theta symmetries of
% the Lagrangian system of the planar Kepler problem.
% c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
% Verify that time translation is a d-theta symmetry and calculate the
% corresponding integral.

pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
{l,glq(k),glv(k),glt}=0;

tvector gam,y;

indexrange 1,2;

fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),f=f(t,q(k),v(k));

l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.

pform r=0;
fdomain r=r(q(k));
let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;

lam(k) := -m*q(k)/r; % The force.

gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$

eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$

y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$ % Symmetry generator.

theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$

factor @;

s := y |_ theta - d f$

glq(k) := @(q k) _| s;
glv(k) := @(v k) _| s;
glt := @(t) _| s;

% Translation in time must generate a symmetry.
xi(k) := 0;
tau := 1;

15 EXAMPLES 28

glq k := glq k;
glv k := glv k;
glt;

% The corresponding integral is of course the energy.
integ := - y _| theta;

clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,q k,v k,tau,xi k;
remfdomain r,f,tau,xi;

% Problem:
% --------
% Calculate the "gradient" and "Laplacian" of a function and the "curl"
% and "divergence" of a one-form in elliptic coordinates.

coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
e phi = cos u*sinh v*d phi;

pform f=0;

fdomain f=f(u,v,phi);

factor e,^;
on rat,gcd;
order cosh v, sin u;
% The gradient:
d f;

factor @;
% The Laplacian:
d # d f;

% Another way of calculating the Laplacian:
-#vardf(1/2*d f^#d f,f);

remfac @;

% Now calculate the "curl" and the "divergence" of a one-form.

pform w=1,a(k)=0;

15 EXAMPLES 29

fdomain a=a(u,v,phi);

w := a(-k)*e k;
% The curl:
x := # d w;

factor @;
% The divergence:
y := # d # w;

remfac @;
clear x,y,w,u,v,phi,e k,a k;
remfdomain a,f;

% Problem:
% --------
% Calculate in a spherical coordinate system the Navier Stokes equations.

coframe e r=d r, e theta =r*d theta, e phi = r*sin theta *d phi;
frame x;

fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);

pform v(k)=0,p=0,w=1;

% We first calculate the convective derivative.

w := v(-k)*e(k)$

factor e; on rat;

cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));

%next we calculate the viscous terms;

visc := nu*(d#d# w - #d#d w) + mu*d#d# w;

% Finally we add the pressure term and print the components of the
% whole equation.

pform nasteq=1,nast(k)=0;

15 EXAMPLES 30

nasteq := cdv - visc + 1/rho*d p$

factor @;

nast(-k) := x(-k) _| nasteq;

remfac @,e;

clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
remfdomain p,v;

% Problem:
% --------
% Calculate from the Lagrangian of a vibrating rod the equation of
% motion and show that the invariance under time translation leads
% to a conserved current.

pform {y,x,t,q,j}=0,lagr=2;

fdomain y=y(x,t),q=q(x),j=j(x);

factor ^;

lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;

vardf(lagr,y);

% The Lagrangian does not explicitly depend on time; therefore the
% vector field @ t generates a symmetry. The conserved current is

pform c=1;
factor d;

c := noether(lagr,y,@ t);

% The exterior derivative of this must be zero or a multiple of the
% equation of motion (weak conservation law) to be a conserved current.

remfac d;

d c;

% i.e. it is a multiple of the equation of motion.

15 EXAMPLES 31

clear lagr,c,j,y,q;
remfdomain y,q,j;

% Problem:
% --------
% Show that the metric structure given by Eguchi and Hanson induces a
% self-dual curvature.
% c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson, "Gravitation, Gauge Theories
% and Differential Geometry", Physics Reports 66, 213, 1980

for all x let cos(x)**2=1-sin(x)**2;

pform f=0,g=0;
fdomain f=f(r), g=g(r);

coframe o(r) = f*d r,
o(theta) = (r/2)*(sin(psi)*d theta - sin(theta)*cos(psi)*d phi),

o(phi) = (r/2)*(-cos(psi)*d theta - sin(theta)*sin(psi)*d phi),
o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);

frame e;

pform gamma(a,b)=1,curv2(a,b)=2;
index_symmetries gamma(a,b),curv2(a,b): antisymmetric;

factor o;

gamma(-a,-b) := -(1/2)*(e(-a) _| (e(-c) _| (d o(-b)))
-e(-b) _| (e(-a) _| (d o(-c)))
+e(-c) _| (e(-b) _| (d o(-a))))*o(c)$

curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$

let f=1/g,g=sqrt(1-(a/r)**4);

pform chck(k,l)=2;
index_symmetries chck(k,l): antisymmetric;

% The following has to be zero for a self-dual curvature.

chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);

15 EXAMPLES 32

clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),r,phi,psi;
remfdomain f,g;

% Example: 6-dimensional FRW model with quadratic curvature terms in
% -------
% the Lagrangian (Lanczos and Gauss-Bonnet terms).
% cf. Henriques, Nuclear Physics, B277, 621 (1986)

for all x let cos(x)**2+sin(x)**2=1;

pform {r,s}=0;
fdomain r=r(t),s=s(t);

coframe o(t) = d t,
o(1) = r*d u/(1 + k*(u**2)/4),
o(2) = r*u*d theta/(1 + k*(u**2)/4),
o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
o(4) = s*d v1,
o(5) = s*sin(v1)*d v2

with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)
+o(4)*o(4)+o(5)*o(5);

frame e;

on nero; factor o,^;

riemannconx om;

pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;

index_symmetries curv(k,l): antisymmetric,
riemann(k,l,m,n): antisymmetric in {k,l},{m,n}

symmetric in {{k,l},{m,n}},
ricci(k,l): symmetric;

curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);

riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));

% The rest is done in the Ricci calculus language,

ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);

15 EXAMPLES 33

riccisc := ricci(-a,-b)*g(a,b);

pform {laglanc,inv1,inv2} = 0;

index_symmetries riemc3(k,l),riemri(k,l),
hlang(k,l),einst(k,l): symmetric;

pform {riemc3(i,j),riemri(i,j)}=0;

riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
inv1 := riemc3(-i,-j)*g(i,j);
riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
inv2 := ricci(-a,-b)*ricci(a,b);
laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);

pform {einst(a,b),hlang(a,b)}=0;

hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
2*ricci(-i,-k)*ricci(-j,K) +
riccisc*ricci(-i,-j) - (1/2)*laglanc*g(-i,-j));

% The complete Einstein tensor:

einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1 +
hlang(-i,-j)*alp2$

alp1 := 1$
factor alp2;

einst(-i,-j) := einst(-i,-j);

clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),riemann(a,b,c,d),
ricci(a,b),riccisc,t,u,v1,v2,theta,phi,r,om(k,l),einst(a,b),
hlang(a,b);

remfdomain r,s;

% Problem:
% --------
% Calculate for a given coframe and given torsion the Riemannian part and
% the torsion induced part of the connection. Calculate the curvature.

% For a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,

15 EXAMPLES 34

% "Application of the REDUCE package EXCALC to the Poincare gauge field
% theory of gravity", GRG Journal, vol. 19, (1988) 197--218

pform {ff, gg}=0;

fdomain ff=ff(r), gg=gg(r);

coframe o(4) = d u + 2*b0*cos(theta)*d phi,
o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
o(2) = gg*d theta,
o(3) = gg*sin(theta)*d phi

with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);

frame e;

pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
{u1,u3,u5}=0;

index_symmetries gamma(a,b): antisymmetric;

fdomain u1=u1(r),u3=u3(r),u5=u5(r);

tor(4) := 0$

tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$

tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$

tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$

gwt(-a) := d o(-a) - tor(-a)$

% The following is the combined connection.
% The Riemannian part could have equally well been calculated by the
% RIEMANNCONX statement.

gamma(-a,-b) := (1/2)*(e(-b) _| (e(-c) _| gwt(-a))
+e(-c) _| (e(-a) _| gwt(-b))

-e(-a) _| (e(-b) _| gwt(-c)))*o(c);

pform curv(a,b)=2;
index_symmetries curv(a,b): antisymmetric;
factor ^;

15 EXAMPLES 35

curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);

clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,x,y,z,r,s,t,u,v,p,q,c,cs;
remfdomain u1,u3,u5,ff,gg;

showtime;
end;

