
NUMERIC

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin – Dahlem

Federal Republic of Germany

E–mail: melenk@zib.de

The NUMERIC package implements some numerical (approximative) algo-
rithms for REDUCE, based on the REDUCE rounded mode arithmetic.
These algorithms are implemented for standard cases. They should not
be called for ill-conditioned problems; please use standard mathematical
libraries for these.

1 Syntax

1.1 Intervals, Starting Points

Intervals are generally coded as lower bound and upper bound connected by
the operator ‘..’, usually associated to a variable in an equation. E.g.

x= (2.5 .. 3.5)

means that the variable x is taken in the range from 2.5 up to 3.5. Note,
that the bounds can be algebraic expressions, which, however, must evaluate
to numeric results. In cases where an interval is returned as the result, the
lower and upper bounds can be extracted by the PART operator as the first
and second part respectively. A starting point is specified by an equation
with a numeric righthand side, e.g.

x=3.0

1

2 MINIMA 2

If for multivariate applications several coordinates must be specified by in-
tervals or as a starting point, these specifications can be collected in one
parameter (which is then a list) or they can be given as separate parameters
alternatively. The list form is more appropriate when the parameters are
built from other REDUCE calculations in an automatic style, while the flat
form is more convenient for direct interactive input.

1.2 Accuracy Control

The keyword parameters accuracy = a and iterations = i, where a and
i must be positive integer numbers, control the iterative algorithms: the
iteration is continued until the local error is below 10−a; if that is impossible
within i steps, the iteration is terminated with an error message. The values
reached so far are then returned as the result.

1.3 tracing

Normally the algorithms produce only a minimum of printed output during
their operation. In cases of an unsuccessful or unexpected long operation a
trace of the iteration can be printed by setting

on trnumeric;

2 Minima

The Fletcher Reeves version of the steepest descent algorithms is used to
find the minimum of a function of one or more variables. The function
must have continuous partial derivatives with respect to all variables. The
starting point of the search can be specified; if not, random values are taken
instead. The steepest descent algorithms in general find only local minima.

Syntax:

NUM MIN (exp, var1[= val1][, var2[= val2] . . .]

[, accuracy = a][, iterations = i])

or

NUM MIN (exp, {var1[= val1][, var2[= val2] . . .]}

3 ROOTS OF FUNCTIONS/ SOLUTIONS OF EQUATIONS 3

[, accuracy = a][, iterations = i])

where exp is a function expression,

var1, var2, . . . are the variables in exp and val1, val2, . . . are the (op-
tional) start values.

NUM MIN tries to find the next local minimum along the descending
path starting at the given point. The result is a list with the minimum
function value as first element followed by a list of equations, where
the variables are equated to the coordinates of the result point.

Examples:

num_min(sin(x)+x/5, x);

{4.9489585606,{X=29.643767785}}

num_min(sin(x)+x/5, x=0);

{ - 1.3342267466,{X= - 1.7721582671}}

% Rosenbrock function (well known as hard to minimize).
fktn := 100*(x1**2-x2)**2 + (1-x1)**2;
num_min(fktn, x1=-1.2, x2=1, iterations=200);

{0.00000021870228295,{X1=0.99953284494,X2=0.99906807238}}

3 Roots of Functions/ Solutions of Equations

An adaptively damped Newton iteration is used to find an approximative
zero of a function, a function vector or the solution of an equation or an
equation system. Equations are internally converted to a difference of lhs
and rhs such that the Newton method (=zero detection) can be applied. The
expressions must have continuous derivatives for all variables. A starting
point for the iteration can be given. If not given, random values are taken
instead. If the number of forms is not equal to the number of variables,
the Newton method cannot be applied. Then the minimum of the sum of
absolute squares is located instead.

4 INTEGRALS 4

With ON COMPLEX solutions with imaginary parts can be found, if either
the expression(s) or the starting point contain a nonzero imaginary part.

Syntax:

NUM SOLVE (exp1, var1[= val1][, accuracy = a][, iterations = i])

or

NUM SOLVE ({exp1, . . . , expn}, var1[= val1], . . . , var1[= valn]

[, accuracy = a][, iterations = i])

or

NUM SOLVE ({exp1, . . . , expn}, {var1[= val1], . . . , var1[= valn]}
[, accuracy = a][, iterations = i])

where exp1, . . . , expn are function expressions,

var1, . . . , varn are the variables,

val1, . . . , valn are optional start values.

NUM SOLVE tries to find a zero/solution of the expression(s). Result
is a list of equations, where the variables are equated to the coordinates
of the result point.

The Jacobian matrix is stored as a side effect in the shared variable
JACOBIAN.

Example:

num_solve({sin x=cos y, x + y = 1},{x=1,y=2});

{X= - 1.8561957251,Y=2.856195584}

jacobian;

[COS(X) SIN(Y)]
[]
[1 1]

4 Integrals

For the numerical evaluation of univariate integrals over a finite interval the
following strategy is used:

5 ORDINARY DIFFERENTIAL EQUATIONS 5

1. If the function has an antiderivative in close form which is bounded in
the integration interval, this is used.

2. Otherwise a Chebyshev approximation is computed, starting with or-
der 20, eventually up to order 80. If that is recognized as sufficiently
convergent it is used for computing the integral by directly integrating
the coefficient sequence.

3. If none of these methods is successful, an adaptive multilevel quadra-
ture algorithm is used.

For multivariate integrals only the adaptive quadrature is used. This al-
gorithm tolerates isolated singularities. The value iterations here limits
the number of local interval intersection levels. Accuracy is a measure for
the relative total discretization error (comparison of order 1 and order 2
approximations).

Syntax:

NUM INT (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .]

[, accuracy = a][, iterations = i])

where exp is the function to be integrated,

var1, var2, . . . are the integration variables,

l1, l2, . . . are the lower bounds,

u1, u2, . . . are the upper bounds.

Result is the value of the integral.

Example:

num_int(sin x,x=(0 .. pi));

2.0000010334

5 Ordinary Differential Equations

A Runge-Kutta method of order 3 finds an approximate graph for the solu-
tion of a ordinary differential equation real initial value problem.

Syntax:

NUM ODESOLVE (exp,depvar = dv,indepvar=(from..to)

5 ORDINARY DIFFERENTIAL EQUATIONS 6

[, accuracy = a][, iterations = i])

where

exp is the differential expression/equation,

depvar is an identifier representing the dependent variable (function
to be found),

indepvar is an identifier representing the independent variable,

exp is an equation (or an expression implicitly set to zero) which con-
tains the first derivative of depvar wrt indepvar,

from is the starting point of integration,

to is the endpoint of integration (allowed to be below from),

dv is the initial value of depvar in the point indepvar = from.

The ODE exp is converted into an explicit form, which then is used for
a Runge Kutta iteration over the given range. The number of steps is
controlled by the value of i (default: 20). If the steps are too coarse to
reach the desired accuracy in the neighborhood of the starting point,
the number is increased automatically.

Result is a list of pairs, each representing a point of the approximate
solution of the ODE problem.

Example:

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);

{{0.0,1.0},{0.2,1.2214},{0.4,1.49181796},{0.6,1.8221064563},

{0.8,2.2255208258},{1.0,2.7182511366}}

Remarks:

– If in exp the differential is not isolated on the lefthand side, please
ensure that the dependent variable is explicitly declared using a DEPEND
statement, e.g.

depend y,x;

otherwise the formal derivative will be computed to zero by REDUCE.

6 BOUNDS OF A FUNCTION 7

– The REDUCE package SOLVE is used to convert the form into an ex-
plicit ODE. If that process fails or has no unique result, the evaluation
is stopped with an error message.

6 Bounds of a Function

Upper and lower bounds of a real valued function over an interval or a rect-
angular multivariate domain are computed by the operator BOUNDS. The
algorithmic basis is the computation with inequalities: starting from the in-
terval(s) of the variables, the bounds are propagated in the expression using
the rules for inequality computation. Some knowledge about the behavior
of special functions like ABS, SIN, COS, EXP, LOG, fractional exponen-
tials etc. is integrated and can be evaluated if the operator BOUNDS is
called with rounded mode on (otherwise only algebraic evaluation rules are
available).

If BOUNDS finds a singularity within an interval, the evaluation is stopped
with an error message indicating the problem part of the expression.

Syntax:

BOUNDS (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .])

BOUNDS (exp, {var1 = (l1..u1)[, var2 = (l2..u2) . . .]})
where exp is the function to be investigated,

var1, var2, . . . are the variables of exp,

l1, l2, . . . and u1, u2, . . . specify the area (intervals).

BOUNDS computes upper and lower bounds for the expression in
the given area. An interval is returned.

Example:

bounds(sin x,x=(1 .. 2));

{-1,1}

on rounded;
bounds(sin x,x=(1 .. 2));

7 CHEBYSHEV CURVE FITTING 8

0.84147098481 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

- 0.25 .. 0.75

7 Chebyshev Curve Fitting

The operator family Chebyshev . . . implements approximation and evalua-
tion of functions by the Chebyshev method. Let T

(a,b)
n (x) be the Chebyshev

polynomial of order n transformed to the interval (a, b). Then a function
f(x) can be approximated in (a, b) by a series

f(x) ≈ ∑N
i=0 ciT

(a,b)
i (x)

The operator Chebyshev fit computes this approximation and returns a list,
which has as first element the sum expressed as a polynomial and as sec-
ond element the sequence of Chebyshev coefficients ci. Chebyshev df and
Chebyshev int transform a Chebyshev coefficient list into the coefficients
of the corresponding derivative or integral respectively. For evaluating a
Chebyshev approximation at a given point in the basic interval the opera-
tor Chebyshev eval can be used. Note that Chebyshev eval is based on a
recurrence relation which is in general more stable than a direct evaluation
of the complete polynomial.

CHEBYSHEV FIT (fcn, var = (lo..hi), n)

CHEBYSHEV EVAL (coeffs, var = (lo..hi), var = pt)

CHEBYSHEV DF (coeffs, var = (lo..hi))

CHEBYSHEV INT (coeffs, var = (lo..hi))

where fcn is an algebraic expression (the function to be fitted), var
is the variable of fcn, lo and hi are numerical real values which de-
scribe an interval (lo < hi), n is the approximation order,an inte-
ger > 0, set to 20 if missing, pt is a numerical value in the interval
and coeffs is a series of Chebyshev coefficients, computed by one of
CHEBY SHEV COEFF , DF or INT .

Example:

8 GENERAL CURVE FITTING 9

on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

3 2
w := {0.03824*x - 0.2398*x + 0.06514*x + 0.9778,

{0.8991,-0.4066,-0.005198,0.009464,-0.00009511}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);

0.4111

8 General Curve Fitting

The operator NUM FIT finds for a set of points the linear combination of
a given set of functions (function basis) which approximates the points best
under the objective of the least squares criterion (minimum of the sum of
the squares of the deviation). The solution is found as zero of the gradient
vector of the sum of squared errors.

Syntax:

NUM FIT (vals, basis, var = pts)

where vals is a list of numeric values,

var is a variable used for the approximation,

pts is a list of coordinate values which correspond to var,

basis is a set of functions varying in var which is used for the approx-
imation.

The result is a list containing as first element the function which approx-
imates the given values, and as second element a list of coefficients which
were used to build this function from the basis.

Example:

9 FUNCTION BASES 10

% approximate a set of factorials by a polynomial
pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

2
{14.571428571*X - 61.428571429*X + 54.6,{54.6,

- 61.428571429,14.571428571}}

num_fit(vals,{1,x,x**2,x**3,x**4},x=pts);

4 3
{2.2083333234*X - 20.249999879*X

2
+ 67.791666154*X - 93.749999133*X

+ 44.999999525,

{44.999999525, - 93.749999133,67.791666154,

- 20.249999879,2.2083333234}}

9 Function Bases

The following procedures compute sets of functions e.g. to be used for
approximation. All procedures have two parameters, the expression to be
used as variable (an identifier in most cases) and the order of the desired
system. The functions are not scaled to a specific interval, but the variable
can be accompanied by a scale factor and/or a translation in order to map
the generic interval of orthogonality to another (e.g. (x − 1/2) ∗ 2pi). The
result is a function list with ascending order, such that the first element is

9 FUNCTION BASES 11

the function of order zero and (for the polynomial systems) the function of
order n is the n + 1-th element.

monomial_base(x,n) {1,x,...,x**n}
trigonometric_base(x,n) {1,sin x,cos x,sin(2x),cos(2x)...}
Bernstein_base(x,n) Bernstein polynomials
Legendre_base(x,n) Legendre polynomials
Laguerre_base(x,n) Laguerre polynomials
Hermite_base(x,n) Hermite polynomials
Chebyshev_base_T(x,n) Chebyshev polynomials first kind
Chebyshev_base_U(x,n) Chebyshev polynomials second kind

Example:

Bernstein_base(x,5);

5 4 3 2
{ - X + 5*X - 10*X + 10*X - 5*X + 1,

4 3 2
5*X*(X - 4*X + 6*X - 4*X + 1),

2 3 2
10*X *(- X + 3*X - 3*X + 1),

3 2
10*X *(X - 2*X + 1),

4
5*X *(- X + 1),

5
X }

