
PHYSOP

A Package for Operator Calculus in Quantum

Theory

User’s Manual
Version 1.5

January 1992

Mathias Warns
Physikalisches Institut der Universität Bonn

Endenicher Allee 11–13
D–5300 BONN 1

Germany

Tel: (++49) 228 733724
Fax: (++49) 228 737869

e–mail: UNP008@DBNRHRZ1.bitnet

1 Introduction

The package PHYSOP has been designed to meet the requirements of the-
oretical physicists looking for a computer algebra tool to perform compli-
cated calculations in quantum theory with expressions containing operators.
These operations consist mainly in the calculation of commutators between
operator expressions and in the evaluations of operator matrix elements in
some abstract space. Since the capabilities of the current REDUCE release
to deal with complex expressions containing noncommutative operators are
rather restricted, the first step was to enhance these possibilities in order to
achieve a better usability of REDUCE for these kind of calculations. This
has led to the development of a first package called NONCOM2 which is de-
scribed in section 2. For more complicated expressions involving both scalar
quantities and operators the need for an additional data type has emerged in

1

2 THE NONCOM2 PACKAGE 2

order to make a clear separation between the various objects present in the
calculation. The implementation of this new REDUCE data type is realized
by the PHYSOP (for PHYSical OPerator) package described in section 3.

2 The NONCOM2 Package

The package NONCOM2 redefines some standard REDUCE routines in or-
der to modify the way noncommutative operators are handled by the system.
In standard REDUCE declaring an operator to be noncommutative using
the NONCOM statement puts a global flag on the operator. This flag is checked
when the system has to decide whether or not two operators commute during
the manipulation of an expression.

The NONCOM2 package redefines the NONCOM statement in a way more
suitable for calculations in physics. Operators have now to be declared non-
commutative pairwise, i.e. coding:

NONCOM A,B;

declares the operators A and B to be noncommutative but allows them to
commute with any other (noncommutative or not) operator present in the
expression. In a similar way if one wants e.g. A(X) and A(Y) not to com-
mute, one has now to code:

NONCOM A,A;

Each operator gets a new property list containing the operators with which
it does not commute. A final example should make the use of the redefined
NONCOM statement clear:

NONCOM A,B,C;

declares A to be noncommutative with B and C, B to be noncommutative
with A and C and C to be noncommutative with A and B. Note that after
these declaration e.g. A(X) and A(Y) are still commuting kernels.

Finally to keep the compatibility with standard REDUCE declaring a single
identifier using the NONCOM statement has the same effect as in standard
REDUCE i.e., the identifier is flagged with the NONCOM tag.

From the user’s point of view there are no other new commands implemented

3 THE PHYSOP PACKAGE 3

by the package. Commutation relations have to be declared in the standard
way as described in the manual i.e. using LET statements. The package
itself consists of several redefined standard REDUCE routines to handle the
new definition of noncommutativity in multiplications and pattern matching
processes.

CAVEAT: Due to its nature, the package is highly version dependent. The
current version has been designed for the 3.3 and 3.4 releases of REDUCE
and may not work with previous versions. Some different (but still correct)
results may occur by using this package in conjunction with LET statements
since part of the pattern matching routines have been redesigned. The
package has been designed to bridge a deficiency of the current REDUCE
version concerning the notion of noncommutativity and it is the author’s
hope that it will be made obsolete by a future release of REDUCE.

3 The PHYSOP package

The package PHYSOP implements a new REDUCE data type to perform
calculations with physical operators. The noncommutativity of operators
is implemented using the NONCOM2 package so this file should be loaded
prior to the use of PHYSOP1. In the following the new commands imple-
mented by the package are described. Beside these additional commands,
the full set of standard REDUCE instructions remains available for perform-
ing any other calculation.

3.1 Type declaration commands

The new REDUCE data type PHYSOP implemented by the package allows
the definition of a new kind of operators (i.e. kernels carrying an arbitrary
number of arguments). Throughout this manual, the name “operator” will
refer, unless explicitly stated otherwise, to this new data type. This data
type is in turn divided into 5 subtypes. For each of this subtype, a declara-
tion command has been defined:

SCALOP A; declares A to be a scalar operator. This operator may carry an
arbitrary number of arguments i.e. after the declaration: SCALOP A;

1To build a fast loading version of PHYSOP the NONCOM2 source code should be
read in prior to the PHYSOP code

3 THE PHYSOP PACKAGE 4

all kernels of the form e.g. A(J), A(1,N), A(N,L,M) are recognized
by the system as being scalar operators.

VECOP V; declares V to be a vector operator. As for scalar operators, the
vector operators may carry an arbitrary number of arguments. For
example V(3) can be used to represent the vector operator ~V3. Note
that the dimension of space in which this operator lives is arbitrary.
One can however address a specific component of the vector operator
by using a special index declared as PHYSINDEX (see below). This index
must then be the first in the argument list of the vector operator.

TENSOP C(3); declares C to be a tensor operator of rank 3. Tensor opera-
tors of any fixed integer rank larger than 1 can be declared. Again this
operator may carry an arbitrary number of arguments and the space
dimension is not fixed. The tensor components can be addressed by
using special PHYSINDEX indices (see below) which have to be placed
in front of all other arguments in the argument list.

STATE U; declares U to be a state, i.e. an object on which operators have
a certain action. The state U can also carry an arbitrary number of
arguments.

PHYSINDEX X; declares X to be a special index which will be used to address
components of vector and tensor operators.

It is very important to understand precisely the way how the type declaration
commands work in order to avoid type mismatch errors when using the
PHYSOP package. The following examples should illustrate the way the
program interprets type declarations. Assume that the declarations listed
above have been typed in by the user, then:

• A,A(1,N),A(N,M,K) are SCALAR operators.

• V,V(3),V(N,M) are VECTOR operators.

• C, C(5),C(Y,Z) are TENSOR operators of rank 3.

• U,U(P),U(N,L,M) are STATES.

BUT: V(X),V(X,3),V(X,N,M) are all scalar operators since the special index
X addresses a specific component of the vector operator (which is a
scalar operator). Accordingly, C(X,X,X) is also a scalar operator be-
cause the diagonal component Cxxx of the tensor operator C is meant
here (C has rank 3 so 3 special indices must be used for the compo-
nents).

3 THE PHYSOP PACKAGE 5

In view of these examples, every time the following text refers to scalar op-
erators, it should be understood that this means not only operators defined
by the SCALOP statement but also components of vector and tensor oper-
ators. Depending on the situation, in some case when dealing only with
the components of vector or tensor operators it may be preferable to use
an operator declared with SCALOP rather than addressing the components
using several special indices (throughout the manual, indices declared with
the PHYSINDEX command are referred to as special indices).

Another important feature of the system is that for each operator declared
using the statements described above, the system generates 2 additional
operators of the same type: the adjoint and the inverse operator. These
operators are accessible to the user for subsequent calculations without any
new declaration. The syntax is as following:

If A has been declared to be an operator (scalar, vector or tensor) the adjoint
operator is denoted A!+ and the inverse operator is denoted A!-1 (an inverse
adjoint operator A!+!-1 is also generated). The exclamation marks do not
appear when these operators are printed out by REDUCE (except when the
switch NAT is set to off) but have to be typed in when these operators are
used in an input expression. An adjoint (but no inverse) state is also gener-
ated for every state defined by the user. One may consider these generated
operators as ”placeholders” which means that these operators are consid-
ered by default as being completely independent of the original operator.
Especially if some value is assigned to the original operator, this value is
not automatically assigned to the generated operators. The user must code
additional assignement statements in order to get the corresponding values.

Exceptions from these rules are (i) that inverse operators are always ordered
at the same place as the original operators and (ii) that the expressions
A!-1*A and A*A!-1 are replaced2 by the unit operator UNIT . This opera-
tor is defined as a scalar operator during the initialization of the PHYSOP
package. It should be used to indicate the type of an operator expression
whenever no other PHYSOP occur in it. For example, the following se-
quence:

SCALOP A;
A:= 5;

2This may not always occur in intermediate steps of a calculation due to efficiency
reasons.

3 THE PHYSOP PACKAGE 6

leads to a type mismatch error and should be replaced by:

SCALOP A;
A:=5*UNIT;

The operator UNIT is a reserved variable of the system and should not be
used for other purposes.

All other kernels (including standard REDUCE operators) occurring in ex-
pressions are treated as ordinary scalar variables without any PHYSOP type
(referred to as scalars in the following). Assignement statements are checked
to ensure correct operator type assignement on both sides leading to an error
if a type mismatch occurs. However an assignement statement of the form
A:= 0 or LET A = 0 is always valid regardless of the type of A.

Finally a command CLEARPHYSOP has been defined to remove the PHYSOP
type from an identifier in order to use it for subsequent calculations (e.g.
as an ordinary REDUCE operator). However it should be remembered that
no substitution rule is cleared by this function. It is therefore left to the
user’s responsibility to clear previously all substitution rules involving the
identifier from which the PHYSOP type is removed.

Users should be very careful when defining procedures or statements of the
type FOR ALL ... LET ... that the PHYSOP type of all identifiers oc-
curring in such expressions is unambigously fixed. The type analysing pro-
cedure is rather restrictive and will print out a ”PHYSOP type conflict”
error message if such ambiguities occur.

3.2 Ordering of operators in an expression

The ordering of kernels in an expression is performed according to the fol-
lowing rules:
1. Scalars are always ordered ahead of PHYSOP operators in an expres-
sion. The REDUCE statement KORDER can be used to control the ordering
of scalars but has no effect on the ordering of operators.

2. The default ordering of operators follows the order in which they have
been declared (and not the alphabetical one). This ordering scheme can be
changed using the command OPORDER. Its syntax is similar to the KORDER
statement, i.e. coding: OPORDER A,V,F; means that all occurrences of the

3 THE PHYSOP PACKAGE 7

operator A are ordered ahead of those of V etc. It is also possible to include
operators carrying indices (both normal and special ones) in the argument
list of OPORDER. However including objects not defined as operators (i.e.
scalars or indices) in the argument list of the OPORDER command leads to an
error.

3. Adjoint operators are placed by the declaration commands just after the
original operators on the OPORDER list. Changing the place of an operator
on this list means not that the adjoint operator is moved accordingly. This
adjoint operator can be moved freely by including it in the argument list of
the OPORDER command.

3.3 Arithmetic operations on operators

The following arithmetic operations are possible with operator expressions:

1. Multiplication or division of an operator by a scalar.

2. Addition and subtraction of operators of the same type.

3. Multiplication of operators is only defined between two scalar operators.

4. The scalar product of two VECTOR operators is implemented with a
new function DOT . The system expands the product of two vector operators
into an ordinary product of the components of these operators by inserting
a special index generated by the program. To give an example, if one codes:

VECOP V,W;
V DOT W;

the system will transform the product into:

V(IDX1) * W(IDX1)

where IDX1 is a PHYSINDEX generated by the system (called a DUMMY
INDEX in the following) to express the summation over the components.
The identifiers IDXn (n is a nonzero integer) are reserved variables for this
purpose and should not be used for other applications. The arithmetic
operator DOT can be used both in infix and prefix form with two arguments.

5. Operators (but not states) can only be raised to an integer power. The

3 THE PHYSOP PACKAGE 8

system expands this power expression into a product of the corresponding
number of terms inserting dummy indices if necessary. The following ex-
amples explain the transformations occurring on power expressions (system
output is indicated with an -->):

SCALOP A; A**2;
- --> A*A
VECOP V; V**4;
- --> V(IDX1)*V(IDX1)*V(IDX2)*V(IDX2)
TENSOP C(2); C**2;
- --> C(IDX3,IDX4)*C(IDX3,IDX4)

Note in particular the way how the system interprets powers of tensor op-
erators which is different from the notation used in matrix algebra.

6. Quotients of operators are only defined between scalar operator expres-
sions. The system transforms the quotient of 2 scalar operators into the
product of the first operator times the inverse of the second one. Example3:

SCALOP A,B; A / B;
-1

--> (B)*A

7. Combining the last 2 rules explains the way how the system handles
negative powers of operators:

SCALOP B;
B**(-3);

-1 -1 -1
--> (B)*(B)*(B)

The method of inserting dummy indices and expanding powers of oper-
ators has been chosen to facilitate the handling of complicated operator
expressions and particularly their application on states (see section 3.4.3).
However it may be useful to get rid of these dummy indices in order to
enhance the readability of the system’s final output. For this purpose the
switch CONTRACT has to be turned on (CONTRACT is normally set to OFF).
The system in this case contracts over dummy indices reinserting the DOT
operator and reassembling the expanded powers. However due to the prede-

3This shows how inverse operators are printed out when the switch NAT is on

3 THE PHYSOP PACKAGE 9

fined operator ordering the system may not remove all the dummy indices
introduced previously.

3.4 Special functions

3.4.1 Commutation relations

If 2 PHYSOPs have been declared noncommutative using the (redefined)
NONCOM statement, it is possible to introduce in the environment elementary
(anti-) commutation relations between them. For this purpose, 2 scalar
operators COMM and ANTICOMM are available. These operators are used in
conjunction with LET statements. Example:

SCALOP A,B,C,D;
LET COMM(A,B)=C;
FOR ALL N,M LET ANTICOMM(A(N),B(M))=D;
VECOP U,V,W; PHYSINDEX X,Y,Z;
FOR ALL X,Y LET COMM(V(X),W(Y))=U(Z);

Note that if special indices are used as dummy variables in FOR ALL ...
LET constructs then these indices should have been declared previously using
the PHYSINDEX command.

Every time the system encounters a product term involving 2 noncommuta-
tive operators which have to be reordered on account of the given operator
ordering, the list of available (anti-) commutators is checked in the follow-
ing way: First the system looks for a commutation relation which matches
the product term. If it fails then the defined anticommutation relations are
checked. If there is no successful match the product term A*B is replaced by:

A*B;
--> COMM(A,B) + B*A

so that the user may introduce the commutation relation later on.

The user may want to force the system to look for anticommutators only;
for this purpose a switch ANTICOM is defined which has to be turned on (
ANTICOM is normally set to OFF). In this case, the above example is replaced
by:

3 THE PHYSOP PACKAGE 10

ON ANTICOM;
A*B;
--> ANTICOMM(A,B) - B*A

Once the operator ordering has been fixed (in the example above B has to be
ordered ahead of A), there is no way to prevent the system from introducing
(anti-)commutators every time it encounters a product whose terms are not
in the right order. On the other hand, simply by changing the OPORDER
statement and reevaluating the expression one can change the operator or-
dering without the need to introduce new commutation relations. Consider
the following example:

SCALOP A,B,C; NONCOM A,B; OPORDER B,A;
LET COMM(A,B)=C;
A*B;
- --> B*A + C;
OPORDER A,B;
B*A;
- --> A*B - C;

The functions COMM and ANTICOMM should only be used to define elementary
(anti-) commutation relations between single operators. For the calculation
of (anti-) commutators between complex operator expressions, the functions
COMMUTE and ANTICOMMUTE have been defined. Example (is included as ex-
ample 1 in the test file):

VECOP P,A,K;
PHYSINDEX X,Y;
FOR ALL X,Y LET COMM(P(X),A(Y))=K(X)*A(Y);
COMMUTE(P**2,P DOT A);

3.4.2 Adjoint expressions

As has been already mentioned, for each operator and state defined using
the declaration commands quoted in section 3.1, the system generates au-
tomatically the corresponding adjoint operator. For the calculation of the
adjoint representation of a complicated operator expression, a function ADJ

3 THE PHYSOP PACKAGE 11

has been defined. Example4:

SCALOP A,B;
ADJ(A*B);

+ +
--> (B)*(A)

3.4.3 Application of operators on states

For this purpose, a function OPAPPLY has been defined. It has 2 arguments
and is used in the following combinations:

(i) LET OPAPPLY(operator, state) = state; This is to define a elementary
action of an operator on a state in analogy to the way elementary commu-
tation relations are introduced to the system. Example:

SCALOP A; STATE U;
FOR ALL N,P LET OPAPPLY((A(N),U(P))= EXP(I*N*P)*U(P);

(ii) LET OPAPPLY(state, state) = scalar exp.; This form is to define scalar
products between states and normalization conditions. Example:

STATE U;
FOR ALL N,M LET OPAPPLY(U(N),U(M)) = IF N=M THEN 1 ELSE 0;

(iii) state := OPAPPLY(operator expression, state); In this way, the action
of an operator expression on a given state is calculated using elementary re-
lations defined as explained in (i). The result may be assigned to a different
state vector.

(iv) OPAPPLY(state, OPAPPLY(operator expression, state)); This is the way
how to calculate matrix elements of operator expressions. The system pro-
ceeds in the following way: first the rightmost operator is applied on the
right state, which means that the system tries to find an elementary rela-
tion which match the application of the operator on the state. If it fails the
system tries to apply the leftmost operator of the expression on the left state
using the adjoint representations. If this fails also, the system prints out a
warning message and stops the evaluation. Otherwise the next operator oc-

4This shows how adjoint operators are printed out when the switch NAT is on

4 KNOWN PROBLEMS IN THE CURRENT RELEASE OF PHYSOP12

curing in the expression is taken and so on until the complete expression is
applied. Then the system looks for a relation expressing the scalar product
of the two resulting states and prints out the final result. An example of
such a calculation is given in the test file.

The infix version of the OPAPPLY function is the vertical bar | . It is right as-
sociative and placed in the precedence list just above the minus (−) operator.
Some of the REDUCE implementation may not work with this character,
the prefix form should then be used instead5.

4 Known problems in the current release of PHYSOP

(i) Some spurious negative powers of operators may appear in the result
of a calculation using the PHYSOP package. This is a purely ”cosmetic”
effect which is due to an additional factorization of the expression in the out-
put printing routines of REDUCE. Setting off the REDUCE switch ALLFAC
(ALLFAC is normally on) should make these terms disappear and print out
the correct result (see example 1 in the test file).

(ii) The current release of the PHYSOP package is not optimized w.r.t. com-
putation speed. Users should be aware that the evaluation of complicated
expressions involving a lot of commutation relations requires a significant
amount of CPU time and memory. Therefore the use of PHYSOP on small
machines is rather limited. A minimal hardware configuration should in-
clude at least 4 MB of memory and a reasonably fast CPU (type Intel 80386
or equiv.).

(iii) Slightly different ordering of operators (especially with multiple oc-
currences of the same operator with different indices) may appear in some
calculations due to the internal ordering of atoms in the underlying LISP
system (see last example in the test file). This cannot be entirely avoided
by the package but does not affect the correctness of the results.

5The source code can also be modified to choose another special character for the
function

5 COMPILATION OF THE PACKAGES 13

5 Compilation of the packages

To build a fast loading module of the NONCOM2 package, enter the follow-
ing commands after starting the REDUCE system:

faslout "noncom2";
in "noncom2.red";

faslend;

To build a fast loading module of the PHYSOP package, enter the following
commands after starting the REDUCE system:

faslout "physop";

in "noncom2.red";
in "physop.red";

faslend;

Input and output file specifications may change according to the underlying
operating system.
On PSL–based systems, a spurious message:

*** unknown function PHYSOP!*SQ called from compiled code

may appear during the compilation of the PHYSOP package. This warning
has no effect on the functionality of the package.

6 Final remarks

The package PHYSOP has been presented by the author at the IV inter.
Conference on Computer Algebra in Physical Research, Dubna (USSR) 1990
(see M. Warns, Software Extensions of REDUCE for Operator Calculus in
Quantum Theory, Proc. of the IV inter. Conf. on Computer Algebra in
Physical Research, Dubna 1990, to appear). It has been developed with the
aim in mind to perform calculations of the type exemplified in the test file
included in the distribution of this package. However it should also be useful
in some other domains like e.g. the calculations of complicated Feynman
diagrams in QCD which could not be performed using the HEPHYS package.
The author is therefore grateful for any suggestion to improve or extend the

A LIST OF ERROR AND WARNING MESSAGES 14

usability of the package. Users should not hesitate to contact the author for
additional help and explanations on how to use this package. Some bugs
may also appear which have not been discovered during the tests performed
prior to the release of this version. Please send in this case to the author a
short input and output listing displaying the encountered problem.

Acknowledgements

The main ideas for the implementation of a new data type in the REDUCE
environnement have been taken from the VECTOR package developed by
Dr. David Harper (D. Harper, Comp. Phys. Comm. 54 (1989) 295). Use-
ful discussions with Dr. Eberhard Schrüfer and Prof. John Fitch are also
gratefully acknowledged.

A List of error and warning messages

In the following the error (E) and warning (W) messages specific to the
PHYSOP package are listed.

cannot declare x as data type (W): An attempt has been made to de-
clare an object x which cannot be used as a PHYSOP operator of the
required type. The declaration command is ignored.

x already defined as data type (W): The object x has already been de-
clared using a REDUCE type declaration command and can therefore
not be used as a PHYSOP operator. The declaration command is
ignored.

x already declared as data type (W): The object x has already been de-
clared with a PHYSOP declaration command. The declaration com-
mand is ignored.

x is not a PHYSOP (E): An invalid argument has been included in an OPORDER
command. Check the arguments.

invalid argument(s) to function (E): A function implemented by the
PHYSOP package has been called with an invalid argument. Check
type of arguments.

B LIST OF AVAILABLE COMMANDS 15

Type conflict in operation (E): A PHYSOP type conflict has occured
during an arithmetic operation. Check the arguments.

invalid call of function with args: arguments (E): A function of the
PHYSOP package has been declared with invalid argument(s). Check
the argument list.

type mismatch in expression (E): A type mismatch has been detected in
an expression. Check the corresponding expression.

type mismatch in assignement (E): A type mismatch has been detected
in an assignment or in a LET statement. Check the listed statement.

PHYSOP type conflict in expr (E): A ambiguity has been detected dur-
ing the type analysis of the expression. Check the expression.

operators in exponent cannot be handled (E): An operator has occurred
in the exponent of an expression.

cannot raise a state to a power (E): states cannot be exponentiated
by the system.

invalid quotient (E): An invalid denominator has occurred in a quotient.
Check the expression.

physops of different types cannot be commuted (E): An invalid op-
erator has occurred in a call of the COMMUTE/ANTICOMMUTE function.

commutators only implemented between scalar operators (E): An in-
valid operator has occurred in the call of the COMMUTE/ANTICOMMUTE
function.

evaluation incomplete due to missing elementary relations (W):
The system has not found all the elementary commutators or applica-
tion relations necessary to calculate or reorder the input expression.
The result may however be used for further calculations.

B List of available commands

inputphysop.idx

