PM - A REDUCE Pattern Matcher

Kevin Mclsaac
The University of Western Australia
and

The RAND Corporation
kevin@Qwri.com

PM is a general pattern matcher similar in style to those found in systems such as
SMP and Mathematica, and is based on the pattern matcher described in Kevin
Mclsaac, "Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

The following is a description of its structure.

A template is any expression composed of literal elements (e.g. 757, 7a” or 7a+17)
and specially denoted pattern variables (e.g. ?a or ?7?b). Atoms beginning with ‘7’
are called generic variables and match any expression.

Atoms beginning with ‘??” are called multi-generic variables and match any ex-
pression or any sequence of expressions including the null or empty sequence. A
sequence is an expression of the form ‘[al, a2,...]". When placed in a function ar-
gument list the brackets are removed, i.e. f([a,1]) — > f(a,1) and f(a,[1,2],b) — >
f(a,1,2,b).

A template is said to match an expression if the template is literally equal to the
expression or if by replacing any of the generic or multi-generic symbols occurring
in the template, the template can be made to be literally equal to the expression.
These replacements are called the bindings for the generic variables. A replacement
is an expression of the form ‘expl — > exp2’, which means expl is replaced by
exp2, or ‘expl —— > exp2’, which is the same except exp2 is not simplified until
after the substitution for expl is made. If the expression has any of the properties;
associativity, commutativity, or an identity element, they are used to determine if
the expressions match. If an attempt to match the template to the expression fails
the matcher backtracks, unbinding generic variables, until it reached a place were
it can make a different choice. It then proceeds along the new branch.

The current matcher proceeds from left to right in a depth first search of the tem-
plate expression tree. Rearrangements of the expression are generated when the
match fails and the matcher backtracks.

The matcher also supports semantic matching. Briefly, if a subtemplate does not
match the corresponding subexpression because they have different structures then
the two are equated and the matcher continues matching the rest of the expression
until all the generic variables in the subexpression are bound. The equality is then
checked. This is controlled by the switch ‘semantic’. By default it is on.



M(exp, temp)

The template, temp, is matched against the expression, exp. If the tem-
plate is literally equal to the expression ‘T’ is returned. If the template
is literally equal to the expression after replacing the generic variables
by their bindings then the set of bindings is returned as a set of replace-
ments. Otherwise 0 (nil) is returned.

Examples:

A 7literal” template

m(f(a){(a));

T

Not literally equal

m((a)£(b)):

0

Nested operators
m(f(a,1 (b)) f(a.h(b)));

T

a ”generic” template
m(f(a,b),f(a,7a));

{"A—- >B}

m(f(a,b),f(?a,7b));

{?B— >B,7A— >A}

The Multi-Generic symbol, ?7a, takes "rest” of arguments
m(f(a,b),f(?7a));

{?7A- >[AB]}

but the Generic symbol, ?a, does not
m(f(a,b).{(7a));

0

Flag h as associative

flag(’(h), assoc);

Associativity is used to ”group” terms together
m(h(a,b,d,e),h(?a,d,?b));

{"B— >E,’A’— >H(A,B)}

"plus” is a symmetric function
m(a+b+c,c+7a+7b);

{7B— >A,?A- >B}

it is also associative
m(a+b+c,b+7a);

{7TA— >C + A}

Note the affect of using multi-generic symbol is different
m(a+b+c,b+77¢);

{?7C- >[C,A]}

temp _= logical-exp

A template may be qualified by the use of the conditional operator ‘_=’, such!-
that. When a such!-that condition is encountered in a template it is held until all
generic variables appearing in logical-exp are bound.

On the binding of the last generic variable logical-exp is simplified and if the result
is not ‘I’ the condition fails and the pattern matcher backtracks. When the tem-
plate has been fully parsed any remaining held such-that conditions are evaluated



and compared to ‘T’.
Examples:

m(f(a,b),f(?a,?b_=(7a="7b)));

0

m(f(a,a),f(?a,?b_=(7a="?b)));

{"B— >A?A— >A}

Note that f(?a,?’b_=(?a=7b)) is the same as f(?a,?a)
S(exp,{templ— >subl,temp2— >sub2,...}rept, depth)

Substitute the set of replacements into exp, resubstituting a maximum of ’rept’
times and to a maximum depth ’depth’. 'Rept’ and ’depth’ have the default values
of 1 and infinity respectively. Essentially S is a breadth first search and replace.
Each template is matched against exp until a successful match occurs.

Any replacements for generic variables are applied to the rhs of that replacement
and exp is replaced by the rhs. The substitution process is restarted on the new
expression starting with the first replacement. If none of the templates match exp
then the first replacement is tried against each sub-expression of exp. If a matching
template is found then the sub-expression is replaced and process continues with
the next sub-expression.

When all sub-expressions have been examined, if a match was found, the expression
is evaluated and the process is restarted on the sub-expressions of the resulting
expression, starting with the first replacement. When all sub-expressions have been
examined and no match found the sub-expressions are reexamined using the next
replacement. Finally when this has been done for all replacements and no match
found then the process recures on each sub-expression.

The process is terminated after rept replacements or when the expression no longer
changes.

Si(exp,{templ— >subl,temp2— >sub2,...}, depth)

Substitute infinitely many times until expression stops changing. Short hand nota-
tion for S(exp,{templ— >subl,temp2— >sub2,...},Inf, depth)

Sd(exp,{templ— >subl,temp2— >sub2,...} rept, depth)

Depth first version of Substitute.

Examples:

s(f(a,b),f(a,?b)— >7b"2);

2

B

s(a+b,a+b— >a*b);

B*A

7 associativity” is used to group a+b-c in to (a+b) + ¢
s(a+b+c,a+b— >a*b);

B*A + C

The next three examples use a rule set that defines the factorial function.
Substitute once

s(nfac(3),{nfac(0)— >1,nfac(?x)— >?x*nfac(?x-1)});
3*NFAC(2)

Substitute twice

s(nfac(3),{nfac(0)— >1,nfac(?x)— >?x*nfac(?x-1)},2);
6*NFAC(1)

Substitute until expression stops changing
si(nfac(3),{nfac(0)— >1nfac(?x)— >?x*nfac(?x-1)});



6

Only substitute at the top level
s(a+b+f(a+b),a+b— >a*b,inf,0);
F(B + A) + B*¥A

temp :- exp

If during simplification of an expression, temp matches some sub-expression then
that sub-expression is replaced by exp. If there is a choice of templates to apply
the least general is used.

If a old rule exists with the same template then the old rule is replaced by the new
rule. If exp is ‘nil’ the rule is retracted.

temp ::- exp

Same as temp :- exp, but the lhs is not simplified until the replacement is made

Examples:

Define the factorial function of a natural number as a recursive function and a
termination condition. For all other values write it as a Gamma Function. Note
that the order of definition is not important as the rules are reordered so that the
most specific rule is tried first.

Note the use of ‘::-’" instead of “:-’ to stop simplification of the LHS. Hold stops its
arguments from being simplified.

fac(?x_-=Natp(?x)) ::- ?x*fac(?x-1);
HOLD(FAC(7X-1)*7X)
fac(0) :- 1;

1

fac(?x) :- Gamma(?x+1);
GAMMA(?X + 1)
fac(3);

6

fac(3/2);

GAMMA (5/2)
Arep({repl,rep2,..})

In future simplifications automatically apply replacements repl, rep2... until the
rules are retracted. In effect it replaces the operator ‘— >’ by “-’ in the set of
replacements {repl, rep2,...}.

Drep({repl,rep2,..})

Delete the rules repl, rep2,...

As we said earlier, the matcher has been constructed along the lines of the pattern
matcher described in Mclsaac with the addition of such-that conditions and ‘seman-
tic matching’ as described in Grief. To make a template efficient some consideration
should be given to the structure of the template and the position of such-that state-
ments. In general the template should be constructed to that failure to match is
recognize as early as possible. The multi-generic symbol should be used when ever
appropriate, particularly with symmetric functions. For further details see Mclsaac.

Examples:

f(?a,?a,?b) is better that f(?a,?b,?c_=(7a=7b))
?7a+77?b is better than 7a+7?b+7c...



The template, f(?a+?b,?a,?b), matched against £(3,2,1) is matched as f(?e_=(?e=7a+7b),?a,?b)
when semantic matching is allowed.

Switches

TRPM
Produces a trace of the rules applied during a substitution. This is useful to see
how the pattern matcher works, or to understand an unexpected result.

In general usage the following switches need not be considered.

SEMANTIC
Allow semantic matches, e.g. f(?a+7b,?a,?b) will match {(3,2,1) even though the
matcher works from left to right.

SYM!-ASSOC

Limits the search space of symmetric associative functions when the template con-
tains multi-generic symbols so that generic symbols will not the function. For
example: m(a+b+c,?a+7?7b) will return {?7a — > a, ??b— > [b,c]} or {7a — > b,
?7b— > [a,c]} or {7a — > ¢, ?7b— > [a,b]} but no {?a — > a+b, ??b— > c} etc. No
sane template should require these types of matches. However they can be made
available by turning the switch off.



