
REDUCE Symbolic Mode Primer

H. Melenk
Konrad–Zuse–Zentrum

für Informationstechnik Berlin
Takustrasse 7

14195 Berlin-Dahlem
Germany

Email: melenk@zib.de

1 Introduction

This document should explain some essential technical details for symbolic mode
programming in REDUCE for those who have some experience in REDUCE
algebraic programming and need to write a program in symbolic mode. For
a general introduction to REDUCE please consult the REDUCE User’s Manual
or one of the available books, e.g. “Algebraic computing with REDUCE” by
Malcolm MacCallum and Francis Wright (Oxford Press).

This text cannot be complete, as the set of facilities available in REDUCE
is so rich that it would take years to describe all and months to read and
understand such text. So a good policy for entering the business of symbolic
mode programming is to study the source files - the liberal REDUCE distribution
policy simplifies this - and to understand those parts which contribute to the
field which one would like to use. This text tries to collect in one place some of
the wide spread basic information in order to facilitate your walk through the
REDUCE mountains.

When should you write a program in symbolic mode? Symbolic programs
are not a priori better than algebraic programs - the essential thing is the
mathematics which they implement. A common prejudice is that symbolic
programs are more “efficient”. This is true only if you can save in symbolic
mode substantial algebraic evaluation steps. As long as most of the computing
time is needed for a few big calculations steps (integrals, equation solving,
polynomial gcd etc.) you will gain nothing when calling the same procedures
from symbolic mode. However, if you need structures which are not present in
algebraic mode or if you can design an evaluation avoiding lots of conversions,
the step to symbolic mode programming is justified.

As it is very difficult to design non trivial but short examples for symbolic
mathematical programming no attempt has been made in that direction. The
examples in this text all are silly - please look at the sources of REDUCE for

1

2 2 VERY SHORT COURSE ON RLISP

meaningful material. The following pieces of the sources are good points for
first reading as they provide a substantial functionality within a few pages of
code:

1. module polrep in package poly: routines addf, addd and addm, the heart
of standard form and standard quotient arithmetic,

2. module det of package matrix: internal arithmetic with symbolic entities
(standard quotients) and clever local data structure,

3. module rational in package poly: implementation of a typical REDUCE
domain,

4. module maxmin in package alg: a typical simplification routine for an
operator,

5. module algbool in package alg: demonstrates how to supply “small”
pieces of symbolic code for algebraic use.

For symbolic mode programming you will urgently need the Standard LISP
Report which describes the basic LISP functions; these will be available under
all REDUCE implementations and they guarantee an optimum of portability.
However, in the course of the years REDUCE has imported some additional
functions on the LISP level – they have been implemented on top of Standard
LISP and live in the module support of the package rlisp.red. In order
to prevent the reinvention of the wheel these functions are described in the
appendix as an extension to the Standard LISP Report.

The description is based on the recent version of REDUCE. Some of the de-
scribed features are not available in earlier versions.

2 Very short course on RLISP

2.1 What is RLISP

As you will know REDUCE is based on the programming language LISP, or
to be more exact, on the LISP dialect Standard LISP. Fortunately you need
not learn the syntax of this language with its large number of brackets - the
REDUCE language is used for algebraic programming as well as for symbolic
programs and in that mode it allows you to use all of the rich LISP data
structures. It is LISP semantics in high level REDUCE syntax. In the following
it is expected that you are familiar with the REDUCE programming language
as far as it is used for algebraic mode programs. You should know how to write
a (recursive) procedure with parameters and local variables, how to build loops,
while blocks, if-then-else clauses and begin-end resp << − >> blocks. If
not, please study the REDUCE manual first or have a look at the source files of
the REDUCE kernel - this is the best method for learning how to program in
RLISP.

2.2 Modes, function classes 3

2.2 Modes, function classes

The symbols symbolic (or equivalent lisp) and algebraic play a double
role: as a statement they switch the evaluation mode globally to symbolic or
algebraic mode respectively, as a mode prefix they tell the REDUCE evaluator
that one isolated evaluation should be done in the named mode. The scope
of this prefix use can be rather narrow (e.g. one single expression) or cover
a larger piece of code up to a complete procedure. Typically procedures in
symbolic modules should be tagged “symbolic” explicitly although this might
be redundant information in a totally symbolic context. If a procedure needs
an evaluation mode different from the actual global one the mode prefix must
be set.

In symbolic mode there are two additional procedure types available, macro
and smacro. The discussion of macros is beyond the scope of this document
- their use requires extensive knowledge of LISP. On the other hand smacros
are frequently use in REDUCE and you will see lots of them in the sources. An
smacro (an abbreviation for “substitution macro”) is an ordinary procedure
tagged with the symbol “smacro” and usually with a rather small body. At
source read time (or better: at REDUCE translator time) any call for an smacro
will be replaced literally by the body of the smacro procedure which saves
execution time for the call protocol at run time. So the purpose of smacros
is twofold: encapsulation of frequently used pieces of code and an increased
efficiency (avoiding function calls). Example:

smacro procedure my_diff(x,y); x-y;

symbolic procedure hugo(a,b); my_diff(a,b);

Here the formal function call my diff in the procedure literally is replaced by
the body of the smacro where x and y are replaced by a and b. Obviously this
translation can be done only if the smacro declaration is entered in a REDUCE
session before the first reference. And later changes of an smacro don’t affect
previously translated references.

Sometimes in older REDUCE sources you will find the symbol expr in front of
a procedure declaration. This is more or less useless as the absence of macro
or smacro symbols indicates that a procedure is of type expr - the default
Standard LISP procedure type.

2.3 Evaluation model, symbols, and variables

The main difference between algebraic and symbolic mode lies in the evaluation
model:

• In algebraic mode a symbol stands for itself as unknown as long as no
value is assigned; after an assignment it plays the role of a representative
for that value just like a variable in a standard programming language:

1: x;

4 2 VERY SHORT COURSE ON RLISP

X
2: x:=y+1$
3: x;
Y + 1

In symbolic mode there is a clear barrier between the role of a symbol
as variable of the programming language RLISP, a named item which
represents some variable value, and the role to be part of an algebraic
expression. If you mean the symbol x you must write ′x; without the
quote tag x is considered as variable x and it will be asked for its value
which is NOT ′x initially. Uninitialized variables cause bugs.

• Consequently all variables must be declared.

• In algebraic mode u := (x + 1)∧2; 1 means it compute a formula by
expanding (x+1)*(x+1); if a value had been assigned to x, substitute
the value for x. In symbolic mode an algebraic expression is interpreted
as statement to compute a numeric value, just like in C or Pascal. So
u := (x + 1)∧2; in symbolic mode means: “take the value of variable x
which is expected to be number, add 1, square and assign the resulting
number to the variable u”.

• If you want to refer to an algebraic expression as a data object, you
must code it as an algebraic form (see below) and mark it as constant
by a quote character. The only constants which don’t need a quote are
numbers and strings. Example:

u:=’(expt (plus x 1) 2);

assigns the (algebraic) expression (x+ 1)∧2 to the variable u.

• algebraic mode implicitly supports standard arithmetic and algebraic eval-
uation for mathematical expressions of arbitrary complexity and for num-
bers from various domains. In symbolic mode, arithmetic with infix op-
erators + − ∗ ∧ / is supported only for the basic LISP numbers (mainly
integers). All arithmetic for formulas, even for domain elements such as
rounded numbers, complex numbers etc. has to be performed by calling
explicitly the functions which can do that job or by calling explicitly the
REDUCE evaluator reval resp aeval (see below).

So symbolic mode programs are much more similar to programs in conven-
tional programming languages such as Pascal or C. All algebraic functionality
of REDUCE is available only as an explicit subroutine interface. In contrast to
algebraic mode nothing is done implicitly for you.

2.4 Variable types

RLISP supports in symbolic mode the following classes of variables:

• Local variables in a procedure are those
1In this text the caret symbol “∧” is used for exponentiation instead of the older FORTRAN

like operator “**”.

2.4 Variable types 5

– declared in the parameter list,
– declared in a scalar or integer statement in a begin-end block,
– bound in the right-hand side of a where statement

– implicitly introduced in a for statement .

These are valid only inside their local context. scalar variables are ini-
tialized to nil, integer to 0 unless they have a special initialization value
(property initvalue*).

symbolic procedure my_adder(x,y);
begin integer r;

r:=x+y;
return r:

end;

In this routine x,y and r are local variables.

In algebraic mode the where statment is used to activate one more more
rules locally. In symbolic mode mode only rules of the form <name>=<value>
are allowed the the right-hand side of a where statement.

• Global variables have to be declared in a statement global ′(v1 v2 · · ·);
These can be accessed from everywhere once they have been declared.
Important: declare them before you use them for the first time in a session.
They are initially set to nil.

global ’(my_support!* my_quotient!*);

It is a common practice to use a trailing asterisk in names for global
and fluid variables such that they easily can be distinguished from locals.
Names of global variables may not be used as local variables.

• Fluid variables are similar to global variables as they can be accessed
from everywhere. But in contrast to globals a fluid variable can occur
as a local variable in a procedure. It then has temporarily the value
assigned in the procedure (we say “it is rebound”); this value will be
accessible globally by nested procedures as long as the rebinding procedure
is not yet terminated. After termination the previous value is reassigned.
Fluid variables are declared in a statement fluid ′(v1 v2 · · ·);. Like global
variables they must be declared before use and they are initially set to
nil.

fluid ’(my_var!*);
my_var!*:=’x;
procedure compute(ex,my_var!*);

do_some_work(ex);

In this case the variable my var∗ has been initialized to the symbol x. If
then a call compute(′a,′ z) is performed, the variable my var∗ will be set
to z during the execution of the body of compute.

• A switch can be declared using the switch statement switch s1, s2 · · · ;
where s1, s2, · · · are symbols. REDUCE automatically connects a fluid
variable with each switch by prefixing an asterisk to the symbol name.

6 2 VERY SHORT COURSE ON RLISP

This variable represents the value of the switch, which is either nil or
t and is set by the statements on and off. E.g. the switch nat has the
associated global variable ∗nat.

• share variables are also global variables which are handled specially by
the REDUCE evaluator such that their symbolic mode values are identical
with their role as symbols in algebraic mode.

2.5 Symbols, numbers and strings

A symbol or id 2 in LISP is a unit which has a name, in the standard case
beginning with a letter and followed by letters and digits. Special characters in
a name or a leading digit have to be flagged by a preceding exclamation mark.
Symbols are the same entities as in algebraic mode. Symbols are unique in the
system. You may view a symbol as a data structure with four slots, the name
with is always a string, the value cell to store assigned values, the function cell
3 to point to an assigned program structure and the property cell as anchor of
the property list. Initially all cells except the name cell are marked empty.

In contrast to algebraic mode in LISP, only integers and floating point numbers
(which don’t exist in that form in algebraic mode) are considered as numbers.
All other numeric quantities from algebraic mode such as rationals, rounded
numbers, Gaussian integers are composite data structures encoded in the RE-
DUCE domain structure (see below).

Just as in algebraic mode, a sequence of characters enclosed in string quotes is
a string. Functions for manipulating symbols, numbers and strings are4:

idp(q) true if q is a symbol
numberp(q) true if q is a number

stringp(q) true if q is a string
liter(q) true if q is a single alphabetic character symbol
digit(q) true if a is a digit character symbol

intern(s) make a symbol from a string
explode(a) decompose a symbol/number/string into its characters

explode2(a) explode, but without escape characters
compress(l) make a symbol/number/string from a list of characters

gensym() generate a new symbol

The functions gensym and compress make symbols which are not yet “internal”:
they are unique, but there may be other symbols with the same name. It makes
debugging especially hard if you cannot access the symbol by its name of course.
The function intern can be used to convert such a symbol into an internal one
- then every reference to the symbol name guarantees access to the desired

2“id” is an abbreviation for “identifier”.
3There are LISP systems which support only one cell for value and function – in such

systems a symbol can represent only a variable or a function exclusively.
4Read the trailing p in names like “idp”, “numberp” etc. as “predicate”, e.g. “numberp”

meaning “number predicate”.

2.6 Boolean values 7

object.

2.6 Boolean values

There are two special symbols named nil and t. nil is used at the same time
for the empty list and the Boolean value “false” . Any value other than
nil is considered as “true” in conditional statements. In order to facilitate
programming, the symbol nil has the preassigned constant value nil such that
a quote here is superfluous. And for the same reason the symbol t evaluates to
itself - this symbol can be used if the Boolean value “true” is needed explicitly,
e.g. as a return value. But please keep in mind that any non-nil value can play
this role. In contrast to algebraic mode the number zero does not represent
the Boolean value “false”.

2.6.1 Pairs, lists

The central structure of LISP is the pair. The external representation of a
pair of two objects is (obj1.obj2). Here the infix dot is used as print symbol as
well as infix constructor. It is often useful to use a double box for representing
a pair graphically, e.g. for (10 . 20):

.---------.
| 10 | 20 |
‘---------’

Functions:

o1.o2 (infix) construct pair (o1.o2)
cons(o1,o2) same as 01.02

pairp(q) true if q is a pair
car(q) extract the first object from a pair
cdr(q) extract the second object from a pair

The pair is a very general construct - since its objects themselves can be pairs,
arbitrary trees and data structures can be built. E.g. ((a.b).(c.d))

.--------.
| * | * |
‘/------\’
/ \

/ \
.-------. .-------.
| a | b | | c | d |
‘-------’ ‘-------’

On the other hand, structures with many members lead to a very complicated
representation if printed using the above notation. Therefore the list concept
has been introduced which allows one to use a special class of pair trees in a
simplified form:

8 2 VERY SHORT COURSE ON RLISP

• in a pair with second element nil the dot and the nil are omitted: (A.nil)
= (A).

• for a pair with another pair as second element one bracket pair and the
dot are omitted: (B.(A)) = (BA), (C.(BA)) = (C BA).

So the list is a linear sequence of pairs, where the cars contain the “data”
items, while the cdrs contain the reference to the successors. The last successor
is nil, which signals the end of the linear list. For the graphical representation
of linear lists horizontally aligned double boxes are useful, e.g. for (C BA)

.-------. .-------. .-------.
| c | *-+--->| b | *-+--->| a |nil|
‘-------’ ‘-------’ ‘-------’

or with omitting the final nil

.-------. .-------. .-------.
| c | *-+--->| b | *-+--->| a | / |
‘-------’ ‘-------’ ‘-------’

The list notation is much simpler than the dot notation - unfortunately
the dots cannot be avoided completely because pairs with id’s or numbers in
the cdr part occur and they play an important role.

Lists can be nested; an example is the internal representation of algebraic forms
(see below) which uses linear lists; e.g. (x+ 1)2 would be represented by lists as

(expt (plus x 1) 2)

Here the top level list has three elements expt, (plus x 1) and 2 where the second
element itself is a linear list of length 3.

.-------. .-------. .-------.
|expt| *+--->| * | *-+--->| 2 | / |
‘-------’ ‘-|-----’ ‘-------’

|
.-------. .-------. .-------.
|plus| *+--->| x | *-+--->| 1 | / |
‘-------’ ‘-------’ ‘-------’

In this graph the cars contain the symbols or numbers or they point to sub-
structures (downwards) while the cdrs point to the successors (to the right)
until the end is reached.

As mentioned already there can be mixtures of both forms if one cdr is not
nil: (A(B.C)D.E) - here the second element of the list is a pair (A.B), the
third element is D and there is no fourth element - the list ends with a non nil
symbol.

.-------. .-------. .-------.
| a | *-+--->| * | *-+--->| d | e |
‘-------’ ‘-|-----’ ‘-------’

|

2.6 Boolean values 9

.-------.
| b | c |
‘-------’

The empty list () is identical to the symbol nil. Note that the REDUCE
algebraic forms are LISP lists where all lists are terminated by a nil.

Functions on lists:

{o1,o2,..on} construct list (o1 o2 · · · on)
list(o1,o2,..on) same as {o1,o2,..on}

o1.l1 (infix) put o1 in front of list l1
pairp(q) true if q is a pair (or a list)
atom(q) true if q is NOT a pair/list

null(q) true if q = nil (=empty list)
car(q) extract the first object from a list
cdr(q) extract the part of the list behind 1st element

nth(q,n) extract the n-th element from list q
length(q) count the number of elements of list q

reverse(q) reverse a list q
append(a,b) append b to the end of a copy of a
member(a,l) test if a is equal to one member of l

memq(a,l) test if a is identical one member of l
delete(a,l) delete a from list l

Remarks:

• All of the above functions are non destructive: an input list remains as
it has been before - the value of each access function is a reference to the
corresponding part of the structure.

• The access functions can operate only if the desired elements are really
there; e.g. if nth with 4 is applied to a 3 element list produces an error,
and car or cdr applied to any symbol or number (including nil) will fail.

• Nested calls of car and cdr can be abbreviated by combining the a’s
and d’s between c and r up to four inner a/d letters. E.g. cadr(u) =
car(cdr(u)) - this is the direct access to the second element, caddr returns
the third element and cadddr the fourth element.

• Although the functions first, second, third, rest known from algebraic
mode operate in some REDUCE implementations in symbolic mode as
synonyms of car, cadr, caddr, cdr, they should not be used here as this
is the case in all REDUCE versions.

• The functions member and memq not only test the membership: if a is
member of the list l, member (or memq) returns the (first) pair which
contains a as its car. E.g.memq(′b,′ (a b c)) returns (b c). This can be used
either if you want to replace this item in the list, or if you want to process
the part after the search item. The function memq looks for a member of
the list which is eq to the object, while member uses equal as test (see
discussion of equality below). If applicable, memq is substantially faster

10 2 VERY SHORT COURSE ON RLISP

than member.

• Delete produces a copy of the top level pair sequence leaving out the
first occurrence of the search item: the original list is not changed, and
a possible second occurence of the search item in the list is not removed.
delete(′a,′ (0 a b a)) will result in (0 b a) where the part (b a) is the original
tail of the input list while the pairs in front of the original first a are new.

Examples: let u be a variable with value (A(B.C)NIL(D)). Then

pairp(u) =t
length(u) =4

null(u) =nil
car(u) = A

cadr(u) =(B.C)
caadr(u) =B
cdadr(u) =C

cdr(u) =((B.C) NIL (D))
length cdr(u) =3

cddr(u) =(nil (D))
null cddr(u) =nil

caddr(u) =nil
null caddr(u) =t

cdddr(u) =((D))
cddddr(u) =nil

null cddddr(u) = t

All data which are not pairs (or lists) are classified as atoms: symbols, numbers,
strings, vectors(see below) and, just as in real world, they are not very atomic
– there are tools to crack them.

2.7 Programming with lists

There are several methods available to construct a list:

u := nil;
u :=1 . u;
u :=2 . u;

Starting with an empty list, elements are pushed on its front one after the other,
here giving (2 1). Please note the blank between the number and the dot: this
is necessary as otherwise the dot would have been parsed as part of the number
representing a floating point value.

u := {9,10};
u := 1 .u;
u := 2 .u;

The same, here not starting with the empty list giving (2 1 9 10). The for
statement has special forms to handle lists:

2.7 Programming with lists 11

• for each x in l · · · performs an action elementwise for the elements in list
l; the elements are accessible by the automatically declared local variable
x one after the other.

• the iterator actions collect and join allow you to construct lists:

– collect generates a list where each iteration step produces exactly
one element,

– join expects that each iteration step produces a complete list (or
nil) and joins them to one long list.

Examples: let e.g. l be a list of numbers (1 − 2 3 − 4 5 − 6):

m:=for each x in l sum x;

m will be the sum of the elements,

s:=for each x in l collect x*x;

s is computed as list with the numbers from x squared,

p:=for each x in l join
if x>0 then {x} else nil;

in this loop the positive numbers produce one element lists, while the negative
numbers are mapped to nil; joined together the result is a list with only the
positive elements,

r:=for i:=1:10 collect -r;

here the result is the list with numbers (−1 −2 −3 · · ·−10). The lists produced
by collect and join are in “correct” order. Warning: In symbolic mode join
links the lists in place for maximum speed 5: The last CDR pointer of the
first list is modified to point to the head of the second list , and so on. This
is no problem if the joined objects are freshly built structures, or if there are
no other references to them. If the in – place operation is dangerous for your
application, you must copy the structure before, e.g. by a call to append with
NIL as second argument:

r:=for i:=1:10 join append(my_extract(u,r),nil);

In this example, the top level chain of the results of my extract is copied such
that the original structure is not modified when joining.

Another very common style for list operations is to use iterative or recursive
programs. The following programs each sum the elements of the list:

symbolic procedure sum_1(l);
begin integer n;
while l do <<n:=n+car l; l:=cdr l>>;
return n;

end;

5In algebraic mode join operates different: the operatend are copied before linking them
to one result list

12 2 VERY SHORT COURSE ON RLISP

This program picks in each step of the the while loop one element from the list
and sets the variable l to the successor position; the loop terminates as soon as
the successor nil is found .

symbolic procedure sum_2(l);
if null l then 0 else car l + sum_2(cdr l);

This program uses recursion for the same task. The program will go down the
list until nil is found, then set the sum to 0 and when coming back from the
recursion add the elements to the sum so far.

symbolic procedure sum_3(l); sum_31(l,0); % initializing
symbolic procedure sum_31(l,n);

if null l then n else sum_31(cdr l,car l+n);

The third example is a bit tricky: it initializes the sum to 0, and when stepping
down in the recursion the sum is updated and passed to the next recursion level
as a parameter.

It is also very common to produce lists in recursive style, e.g. inverting the signs
in a list of numbers could be written as

symbolic procedure invertsgn(l);
if null l then nil else -car l . invertsgn(cdr l);

and with most LISP compilers this program would as efficient as the corre-
sponding loop

for each x in l collect -x;

but produce less code. Note that as with for each - collect, the elements in the
resulting list will be in the original order. The recursive programming style is
typical for LISP and it is used for hundreds of REDUCE routines.

2.8 In-place operations

All list construction described so far except join is of a copying nature: every
construction by the dot or the curly brackets always creates fresh pairs and an
old list is untouched. However, there are operations to modify elements or the
structure of an existing list in place. These should be used only with greatest
care: if there is another reference to the list, its structure will be modified too,
a possibly unwanted side effect. The functions are6:

car l := u replace first element of l by u
rplaca(l,u) old form for car l := u
cdr l := u replace cdr part of l by u

rplacd(l,u) old form for cdr l := u
nth(l,j) := u replace the j-th element of l by u

nconc(a,b) insert b as cdr in the last pair of a
reversip(l) invert the sequence of l using the same pairs again

6Read “reversip” as “reverse-in-place” and “nconc” as “concatenate”

2.9 Equal tests: Equality vs. Identity 13

2.9 Equal tests: Equality vs. Identity

There are two classes of equality in LISP, eq and equal, in REDUCE written as
the infix operators eq, and equal sign = respectively. As symbols are unique,
both are equivalent for them: if symbols are equal, they are eq.

u :=′ a; v :=′ a; u eq v ⇒ t

here the variables u and v represent the same symbol and consequently they
are eq.

For lists, things are different. Here we must distinguish between references
to pairs which contain the same contents (“equal”) or references to the same
identical pair instance(“eq”). A pair is eq to itself only, but it is equal to a
different pair if their cars and cdrs are equal - this is a recursive definition.
Example:

u := {1, 2}; v := {1, 2};w := u;

u = v ⇒ t ,u = w ⇒ t

u eq v ⇒ nil, u eq w ⇒ t

Here u, v and w have as values pairs with same cars and equal cdrs, but only
u and w refer to the identical pair because for v fresh pairs have been built. In
some points REDUCE relies on identity of some structures, e.g. for composite
kernels of standard forms.

2.10 Properties, Flags

Another important concept of LISP is the ability to assign properties and
flags to each symbol. A property is a symbol (a “name”) together with a
value. Both, property name and property value are completely free. Properties
are set by the function put and read by the function get.

put(’hugo,’evaluator,’compute_hugo);
. . .

get(’hugo,’evaluator) => compute_hugo
get(’otto,’evaluator) => nil

A property-value pair remains assigned for a symbol until the value is replaced
by a different value or until the property is removed by remprop.

A flag is similar to a property, but it represents only the values “yes” or “no”
(= flag is present or absent). The functions for setting and testing flags are
flag and flagp, remflag for removal.

As most other LISP programs, REDUCE makes extensive use of properties.
E.g. the algebraic properties of an operator are encoded in that way. So the
symbol plus has among others the REDUCE properties prtch = + (the print
character), infix = 267 (the precedence among the infix operators), simpfn =

7This number may change if additional operators of lower precedence are introduced

14 2 VERY SHORT COURSE ON RLISP

simpplus (the name of the routine responsible for its simplification) and the
flags symmetric, realvalued, nary and some more. These allow a data driven
programming model which has been used in the LISP world for decades already:
if the simplifier operates on an expression, it asks the leading operator for its
simplification function; if there is one (and there will be one for all operators),
this function is invoked to do the job.

There are various fields where this type of programming is used inside RE-
DUCE, e.g. the complete domain arithmetic has been implemented in that way:
any non-integer domain element is encoded as a list with a leading symbol
(the domain mode) which contains all knowledge about arithmetic, conversion,
printing etc. for this domain as properties and flags.

If your REDUCE system is based on PSL, you can inspect a property list by
calling the function prop which has one argument (the symbol to be inspected)
and which returns the properties and flags as list. E.g.

a := mat((1,2),(3,4));
prop ’a;
prop ’mat;
prop ’matrix;

2.11 Alists

Another frequently used LISP structure is the association list (alist),
which is an associative memory: a list where each element is a pair with a
search item and a value item. The function assoc picks the pair for a given
search item out of the alist. For example constructing a multiplier with mem-
ory:

fluid ’(product_database*);
symbolic procedure multiply(u,v);
begin scalar w,r;
w:=u.v;
r:=assoc(w,product_database*);
if r then return cdr r; % found
r:=u*v;
product_database*:=(w.r).product_database*;
return r;

end;

here the pair u.v is used as search item. If an entry is found in the database, its
value part is returned. Otherwise the product is computed and the new entry
is added to the database. After calling this function with arguments 2 and 3,
and then with 2 and 6 the structure would be

.-------. .-------.
| * | *-+--->| * | / |
‘-|-----’ ‘-|-----’

2.12 Vectors 15

| |
.-------. .-------.
| * | 6 | | * | 12|
‘-|-----’ ‘-|-----’
| |

.-------. .-------.
| 2 | 3 | | 2 | 6 |
‘-------’ ‘-------’

Here each element in the top level list points to one generalized name-value pair,
where the name itself is a structure (here a pair of two numbers). REDUCE uses
association lists for many different purposes; e.g. if an expression is simplified,
the expression and its simplified variant are stored in an association list such
that for a second access to the same expression its simplified form is immediately
accessible.

2.12 Vectors

Lists enable access of items of a linear collection by position number using the
function nth; however, this access is inefficient if used frequently because for
every access the sequence of pairs has to be traversed until the desired object
is reached. An alternative structure for direct access by element number in
symbolic mode is the vector. The first element in a vector has the index 0.

v:=mkvect(n) create a vector of length n
putv(v,m,u) put value u into mth slot of vector v

getv(v,m) extract element m from vector v
upbv(v) returns upper bound for v

Note that putv is a “destructive” operation.

3 Algebraic data formats and evaluation

3.1 Prefix forms

The basic format for representing mathematical formulae is the algebraic
form : an expression is internally encoded as a list with prefix operators:

• the first element of a list is an operator,

• the following elements of a list are the arguments which can be symbols
(unknowns), numbers or algebraic forms in prefix notation.

Examples:

x+ 1⇒ (PLUS X 1)

x+ y + 1⇒ (PLUS X Y 1)

x+ y ∗ z + 1⇒ (PLUS X (TIMES Y Z) 1)

16 3 ALGEBRAIC DATA FORMATS AND EVALUATION

x∧(y + 1)⇒ (EXPT X (PLUS Y 1))

Algebraic forms are used for many purposes, for data input, for transferring
data between various system components and for output. To get a feel as to
how algebraic forms look like, you can make REDUCE display them for you,
e.g. by the following sequence:

u:=(x+y)^3/(log z-sqrt 2);
symbolic reval ’u;

The first statement assigns an algebraic expression to a variable as usual in
algebraic mode, and the second statement forces REDUCE to print the algebraic
form corresponding to this expression in symbolic mode.

3.2 *SQ

REDUCE uses internally a different representation for algebraic expressions, the
standard quotient(SQ, see below). As conversion between algebraic forms and
standard quotients is expensive, REDUCE tries to keep the data as long in SQ
form as possible. For this purpose there is a special variant of the algebraic form
(∗SQ u ind): here the internal operator ∗SQ indicates that the parameter u is
not an algebraic form but a standard quotient. If such expression is evaluated,
REDUCE detects immediately that it will find the standard quotient already as
the second element of the list and no more conversion is necessary.

However, if since creation of this form some values in the system have been
changed, the form u might be no longer the “correct” standard quotient; e.g.
one of its unknowns might have a value now. For this purpose the third element
ind in the list has been introduced: As long as the form u is the correct one,
it will be T . As soon as a significant value in the system changes which might
affect the validity of u, REDUCE switches all ind elements in the ∗SQ forms
swimming around to nil. So the evaluator decides from the second parameter
whether to use u unchanged or to re-evaluate.

By the way, the global replacement of the second parameter in the ∗SQ forms is
a good example of an in-place list operation with a wanted side effect: REDUCE
maintains a unique list ∗sqvar∗ = (t) and all ∗SQ forms are built with this list
as last pair. If the environment changes it is sufficient to replace this single t
in ∗sqvar∗ by nil and all ∗SQ forms built with the actual ∗sqvar∗-tail inherit
this automatically switching from t to nil; REDUCE then creates a fresh list
∗sqvar∗ = (t) to be used for the next generation of ∗SQ forms.

3.3 Composite forms

3.3.1 Lists, equations

For algebraic mode, lists are represented by the prefix operator LIST . From
the symbolic mode standpoint it may appear a bit curious that one has to insert

3.4 Algebraic evaluator: reval, aeval, aeval* 17

the symbol LIST into a list in order to make it a correct algebraic object, but
this is necessary in the prefix algebraic context. E.g. try in algebraic mode

u:={a,b,{c,d},e};
lisp reval ’u;

you will see the result (LIST A B (LIST C D) E).

Correspondingly equations are represented by the prefix operator EQUAL
followed by the right-hand and the left-hand sides as parameters; e.g. x =
sqrt(2) is represented as (EQUAL X (SQRT 2));

The result of solve (x∧ 2=2,x); is an instructive mixture of all these forms:

(LIST (EQUAL X (!*SQ (((((EXPT 2 (QUOTIENT 1 2)). 1). -1)). 1) T))
(EQUAL X (!*SQ (((((EXPT 2 (QUOTIENT 1 2)). 1). 1)). 1) T)))

this form is a list with two equations and the equations have ∗SQ forms as
right-hand sides.

3.3.2 Matrices

A matrix too is represented internally by a prefix form with operator MAT
followed by the rows; each row is a list containing the elements as algebraic
forms. The elements can be accessed easily using the access function nth.
Example: the matrix mat((1, 2), (3, 4)) is encoded as (MAT (1 2) (3 4)). The
form nth(nth(m, 3), 2) gives access to the element (2,2). Be careful if you use
this form for an assignment: nth(nth(m, 3), 2) := 17; is an in-place operation.
You can create a matrix easily by a symbolic program, e.g. a n*n unit matrix

symbolic procedure my_unit_matrix(n);
’mat . for i:=1:n collect
for j:=1:n collect if i=j then 1 else 0;

3.4 Algebraic evaluator: reval, aeval, aeval*

The main entries to the algebraic evaluator are the symbolic mode functions
reval and aeval. Both have as input an algebraic expression and return the
fully evaluated result. Reval always returns an algebraic form in full prefix op-
erator form, while aeval tries to keep the result in ∗SQ-form whenever possible.
Almost all algebraic functionality of REDUCE can be invoked by calling these
procedures, e.g.

reval ’(solve (plus (expt x 2) 3) x);

If you turn on the switch defn in algebraic mode you will see that REDUCE
translates most statements into calls for aeval.

Reval and aeval are also adequate tools for accessing the values of algebraic
quantities and for evaluation of unevaluated procedure parameters; they do the
complete job for you.

18 4 STANDARD FORMS, STANDARD QUOTIENTS

However, there is one exception: the left-hand side of an equation in general is
not evaluated by reval and aeval. E.g.

l:= a=b;
a:=17;b:=4;
symbolic reval ’l;

produces the output (EQUAL A 4). If you write a program for equations you
either should evaluate the left-hand sides yourself by calling reval or rebind
the internal switch *evallhseqp 8 locally(!) by t - then REDUCE will evaluate
both sides of an equation.

REDUCE maintains an internal buffer alglist* where all evaluation results
are stored such that a repeated request for the same evaluation can be satisfied
by a simple and fast table lookup9. As a side effect, aeval resets alglist*
empty before starting a computation10. There is a second function aeval*:
this function performs the same operation, but in contrast to aeval it does
not reset alglist* and can profit from previous results. The REDUCE uses
both, aeval and aeval* depending of the specific environment of a translated
statement.

4 Standard Forms, Standard Quotients

4.1 Introduction

On of the most important tasks performed by a computer algebra system is the
reduction of an algebraic expression to a canonical form. A reduction process
is canonical if it guarantees that two expressions are transformed to the same
form if and only if they are algebraically identical. Unfortunately canonical
forms are not known for all algebraic objects, e.g. for surds. The canonical
form of REDUCE is the standard quotient (“SQ”) which is a quotient of two
standard forms (“SF”). An SF is a polynomial in internal representation and
an SQ is a quotient of two polynomials, a rational function. At the same time
SQ and SF are the forms used internally for most arithmetic.

In this section the structures of SF and SQ are described, followed by a list of
operations on these. For programming and debugging in symbolic mode it is
often necessary to decipher an expression of this type. However, the knowledge
about this part of the internal REDUCE structure should never be used to access
SF of SQ directly by LISP primitives. Instead use only “official” primitives
supplied by REDUCE.

8Read “evallhseqp” as “evaluate left-hand side of equations predicate”.
9The use of alglist* is controlled by an internal switch *uncached: if this variable has a

non-nil value, the caching is suppressed.
10Of course, there are many more places where alglist* needs to be reset; e.g. any assign-

ment causes alglist* to be reset because the assigned value might make one of the stored
values invalid.

4.2 Coefficients 19

4.2 Coefficients

The coefficients in SF and SQ are the “numbers” from various algebraic contexts.
They are called domain elements and uniformly represented either as integer
numbers or pairs where the car part contains an identifier describing the domain
and its arithmetic by its properties; the cdr part describes the value.

1. Integers: integer numbers ∈ Z represent integer coefficients directly,

2. Gaussian integers: complex numbers with integer real and imaginary part
(:gi: re . im) with re, im ∈ Z,

3. Rational numbers: quotients of integers (:rn: nu . de) with nu, de ∈ Z,

4. Modular numbers: numbers modulo the current prime (:mod: . j) where
0 ≤ j < currentmodulus∗ 11.

5. Rounded numbers: floating point numbers extended in precision and mag-
nitude (:rd: . fp) with LISP floating point number fp or (:rd: mant . exp)
with integers mant and exp representing an extended floating point value,

6. Rounded complex numbers: numbers with rounded real and imaginary
parts (:gr: fre . fim) with LISP floating point numbers fre and fim or
(:gr: (rmant . rexp) . (imant . iexp)) with extended real and imaginary
parts.

The neutral elements zero and one for addition and multiplication respectively
are identical for all domains: zero is represented as nil and one by the integer
number 1.

The list of domains is open ended: if a new coefficient domain is required for
an application field, this can be created and linked to the system at any time.
The necessary structure is described in the source file for the module dmodeop.

The tag of the currently active domain is stored in the value of the variable
dmode*. nil represents the default domain (integers). This variable should not
be modified directly - instead use the function setdmode:

setdmode(DOM:domain,MODE:bool);

where domain is a domain name (e.g. ′rational) and the Boolean second pa-
rameter tells whether to activate (t) or to deactivate (nil) the domain. Note
that setdmode does not set on the corresponding switches. You must do that
yourself. E.g. for a proper activation and deactivation of complex rounded call

!*rounded := t;
setdmode(’rounded,t);
!*complex := t;
setdmode(’complex,t);
.... % do your computation
setdmode(’complex,nil);

11The upper half of the modular numbers are printed as negative numbers if the switch
balanced mod is on; hovever, that does not affect the internal representation which uses always
integers ≥ 0

20 4 STANDARD FORMS, STANDARD QUOTIENTS

!*complex := nil;
setdmode(’rounded,nil);
!*rounded := nil;

In order to convert the domain tag into the domain name use the property
dname, e.g.

get(dmode!*,’dname);

will result in the name of the current domain.

4.3 Generic arithmetic with domain elements

There is a complete set of arithmetic functions for performing arithmetic oper-
ations with domain elements:

!:zerop(a) test a = 0
!:plus(a,b) a+ b

!:difference(a,b) a− b
!:minus(a) −a

!:minusp(a) test a < 0
!:times(a,b) a ∗ b

!:quotient(a,b) a/b
!:recip(a) 1/b

!:expt(a,n) an

!:gcd(a,b) greatest commondivisor of (a, b)

4.4 Kernels, kernel order

Kernels are the “unknowns” in a polynomial. A kernel can be an

• identifier: e.g. x, alpha, represented as LISP symbols X, ALPHA,

• operator form: e.g. sin(alpha),sqrt(x+ 1),bessel(j, x), represented as al-
gebraic expression (SINALPHA), (EXPT (PLUS X 1) (QUOTIENT 1 2)),
(BESSEL J X).

• A standard form, e.g. (((A . 1) . 1) . 1) This option is used only if the
default mode of full expantions is turned off (see below: non-expanded
standard form).

It is essential for the operation of REDUCE that kernels are unique. This is no
problem for id’s as these are unique by LISP definition. For composite kernels
REDUCE ensures that these are made unique before they enter a standard
form. Never construct a composite kernel by hand. Instead use the function
*a2k for converting an algebraic expression into a kernel or use simp (see below).
On the other hand, the uniqueness of kernels is of big advantage for comparisons:
the equality can be tested with eq instead of = and faster memq and atsoc can
be used instead of member and assoc.

4.5 Standard form structure 21

The set of all kernels is totally ordered by the kernel order. REDUCE has
by default some ordering which is roughly based on lexicographic comparison.
The ordering can be changed internally by calling setkorder (corresponding
to the algebraic statement korder) with a list of kernels as argument. These
kernels precede all other kernels in the given sequence .Setkorder returns as
result the previous order and it is a good policy to restore the old order after
you have changed it:

begin scalar oldorder,;
oldorder:=setkorder ’(x y z);
....

setkorder oldorder;
....

end;

The current kernel order list is the value of the variable kord*. The value nil
signals that the default ordering is active.

To check the system order of two algebraic expressions use the function ordp
with two arguments, which returns true if the first argument is lower in the
ordering sequence as the second one. This check does not consider the actual
kord*. For kernels there is an extended order check function ordop which does
consider the actual kord*. However, you need to call these functions only rarely
as the algebraic engine of REDUCE maintains a proper order in any context.

4.5 Standard form structure

A standard form is a polynomial in internal recursive representation where
the kernel order defines the recursive structure. E.g. with kernel order (x y)
the polynomial x2y + x2 + 2xy + y2 + x + 3 is represented as a polynomial in
x with coefficients which are polynomials in y and integer coefficients: x2 ∗ (y ∗
1 + 1) +x ∗ (y ∗ 2 + 1) + (y2 ∗ 1 + 3); for better correspondence with the internal
representation here the integer coefficients are in the trailing position and the
trivial coefficients 1 are included. A standard form is

• <domain element>

• <mvar> .**<ldeg> .*<lc> .+<red>, internally represented as (((mvar.ldeg).lc).red)

with the components

• mvar: the leading kernel,

• ldeg: an integer representing the power of mvar in the leading term,

• lc: the leading coefficient is itself a standard form, not containing mvar
any more,

• red: the reductum too is a standard form, containing mvar at most in
powers below ldeg.

Note that any standard form ends with a domain element which is nil if there
is no constant term. E.g. the above polynomial will be represented internally

22 4 STANDARD FORMS, STANDARD QUOTIENTS

by

(((X .2) ((Y. 1). 1). 1) ((X. 1) ((Y. 1). 2)) ((Y. 2). 1). 3)

with the components

• mvar: X

• ldeg: 2

• lc: ((Y. 1). 1). 1) = (y + 1)

• red: (((X. 1) ((Y. 1). 2)) ((Y. 2). 1). 3) = xy2 + 3.

4.6 Operations on standard forms

Arithmetic with standard forms is performed by the functions12

null(f) test f = 0
minusf(f) test f < 0 (formally)

domainp(f) test if f is a domain element (e.g. number)
addf(f1,f2) f1 + f2

negf(f) -f
addf(f1,negf f2) f1-f2

multf(f1,f2) f1*f2
mksp**(f1,n) compute f1**n

quotf(f1,f2) f1/f2 if divisible, else nil
quotfx(f1,f2) f1/f2 divisiblity assumend, no check
qremf(f1,f2) pair (quotient.remainder)

As standard forms are a superset of domain elements these functions also can
be used for arithmetic with domain elements or for combining standard forms
with integer numbers. They can even be used to compute with integers as long
as these are regarded as “degenerate” polynomials.

For access of the components of a standard form there are functions

mvar(f) extract leading kernel
ldeg(f) extract leading degree

lc(f) extract leading coefficient
red(f) extract reductum f

These functions can be applied only if the form is not a domain element. The
following example presents a typical function evaluating a standard form; it
looks for the maximum power of a specified kernel y in a standard form f :

symbolic procedure my_maxpow(f,y);
if domainp f then 0 else
if mvar f eq y then ldeg f else
max(my_maxpow(lc f,d),my_maxpow(red f,d));

12Be careful not to intermix the names “minusf” and “negf”. And take into account that
minusf will return a positive result only if the value is definitely known to be less that 0.

4.7 Reordering 23

This function has a double recursion which is typically for functions traversing
standard forms: if the top node is not trivial (domainp) or not a power of y
the procedure branches to the coefficient form and to the reductum form - both
can contain references to the kernel y. Kernels are unique in the system and
therefore the equality test is performed by eq.

For the initial construction of a standard form a safe and efficient way is to
build an algebraic expression first and convert it using simp (see below) or to
use the arithmetic functions above too. For elementary conversions use

*k2f(k) convert unique kernel k to SF
numr simp(a) convert algebraic expression a to SF

prepf(f) convert a SF f to an algebraic expression

Note that integers are already an SF and so need not be converted.

Although the are infix macros .** , .* , .+ to construct standard forms,
they should be avoided unless you are completely sure what you are doing:
they construct without any consistency checks, and wrong structures may lead
to inconsistent results; such cases are difficult to debug.

4.7 Reordering

If you change the kernel order it is necessary to reorder standard forms if
they are processed under the new order by calling

reorder(f) reorders f to the current order

Please ensure that you never use a standard form which does not correspond
to the actual order - otherwise very strange results can occur. Freshly created
standard forms will always have the current order.

4.8 Standard Quotients

A standard quotient is a pair of standard forms (numr ./ denr), in LISP
represented as (numr . denr). If the denominator is trivial, the standard form
1 is used. The constructor, selector and conversion functions are

numr(q) select the numerator part
denr(q) select the denominator part

f2q(f) convert a standard form f to SQ
simp(a) convert algebraic form a to SQ

prepsq(q) convert SQ to algebraic form

Arithmetic with standard quotients is performed by the functions

addsq(q1,q2) q1 + q2
negsq(q) -q

subtrsq(q1,q2) q1-q2
multsq(q1,q2) q1*q2
quotsq(q1,q2) q1/q2

24 4 STANDARD FORMS, STANDARD QUOTIENTS

Note that there is no zero test for standard quotients; instead use the zero test
for the numerator null(numr(q)).

When should you use standard quotients and when standard forms? If you
are sure that no denominator other than one can occur you should use standard
forms, otherwise standard quotients are the only possible choice. You can
of course mix arithmetic with both, however that strategy is not recommended
unless you keep track carefully; debugging is hard. Arithmetic functions have
been coded for maximum efficiency: none of them test the validity of their
arguments.

4.9 Substitutions

For substituting kernels in standard forms or standard quotients by other
kernels or arbitrary algebraic expressions the following functions are available :

subf(f,a) substitute a in SF f
subsq(q,a) substitute a in SQ q

where a is a list of pairs, each with a kernel to be replaced in the car and its
replacement as algebraic form in the cdr 13, e.g.

uhu := simp(’(expt(plus x y) 10));
otto:= subsq(uhu, ’((x . 5) (y . (plus a b))));

Here x is replaced by 5 while y is replaced by a+ b.

Note that

• both subf and subsq return a standard quotient (the substitution
might have caused a non trivial denominator),

• subf and subsq also introduce substitutions which have been coded in
rules - so it makes sense to call these routines with nil as the second
argument if you have introduced a new rule and some standard forms or
standard quotients need to be re simplified under these.

4.10 Useful facilities for standard forms

4.10.1 Kernel list

The function kernels extracts all kernels from a standard form and returns
them as list.

kernels numr simp ’(plus (expt x 3)(expt y 4));

will result in (x y).

13The second argument of subf and subsq is a typical association list structure.

4.11 Variant: non-expanded standard form 25

4.10.2 Greatest common divisor

The greatest common divisor of two polynomials is computed by the function
*gcdf. It takes as arguments two standard forms and returns a standard form
or a 1 if there is no non trivial common divisor.

4.10.3 Factorization

The function fctrf is the interface for calling the factorizer. It takes a
standard form as parameter and returns a list which contains

• as first element the content of the polynomial - that is the gcd of the
coefficients or the “common numeric factor”,

• as second and following elements the factors in the form (SF.m) where SF
is the factor as standard form and m is its multiplicity.

So calling fctrf for 2x2 − 2 will result in

(2 ((((X . 1) . 1) . 1) . 1) ((((X . 1) . 1) . -1) . 1))

Here you see the common domain factor 2 and the two factors x+ 1 and x− 1
as standard forms paired with their multiplicity 1.

4.11 Variant: non-expanded standard form

The standard form structure described so far is used by default for the fully
expanded expressions with common denominator. By setting on factor, off
exp, or off mcd the slots mvar and ldeg may be used in an exended style:

• ldeg can be a negative number to represent a reciprocal factor,

off mcd; (x*a+y*b)/(a*b);

-1 -1
a *y + b *x

lisp ws;
(!*sq ((((a . -1) ((y . 1) . 1)) ((b . -1) ((x . 1) . 1))) . 1) t)

Here the numerator form of the standard quotient is a sum where each
term is a product of one kernel with a positive and one kernel with a
neagative exponent.

• mvar may be a standard form to represent a factored polynomial,

on factor; (x^2+y)^2*(y+1);

2 2
(x + y) *(y + 1)

lisp ws;

265 COMMUNICATION BETWEEN ALGEBRAIC AND SYMBOLIC MODES

(!*sq (((((((x . 2) . 1) ((y . 1) . 1)) . 2) (((((y . 1) . 1) . 1)
. 1) . 1))) . 1) t)

Here the numerator is a standard form in factored form where the inner
polynomials (x+ y) and (y+ 1) are used as mvars, the first one with the
exponent 2 and the second one with exponent 1.

Special functions to work with composite standard forms:

sfp(m) test if m is a standard form (T) or a kernes(NIL)
expnd(f) expand a standard form f

To distinguish between factored and expanded standard forms, use the predi-
cated sfp: sfp applied to mvar of a standard form returns T if the main variable
slot is occupied by a nested standard form. To expand a factored standard form
you may use the funtion expnd; however, you need to turn the switch exp on
during that call, e.g.

u:=expnd u where !*exp=t;

Don’t build non–expanded standard forms yourself – otherwise you run the risk
to produce objects with a bad structure (e.g. a wrong term order) resulting
in wrong computational results. You better rely on the standard routines for
manipulating these objects – as soon as ∗exp is off and ∗factor is on they
produce the product forms anyway.

5 Communication between algebraic and symbolic
modes

The main aim of programs written in symbolic mode is to implement the evalu-
ation steps to be invoked from algebraic mode (top level REDUCE). This section
describes how to link symbolic routines to algebraic mode and how to exchange
data between the modes.

5.1 Algebraic variables

A variable which has been declared share by the REDUCE share command
is accessible from both modes in the same style and it represents the same
algebraic value. A share variable is the easiest way to transfer data between
the modes. The only restriction is that a symbolic program should assign only
a legal algebraic form to it - otherwise a later access in algebraic mode can lead
to problems. Example:

share hugo;
hugo :=(x+y)**2$
hugo;
symbolic;
hugo := reval {’sqrt,hugo};

5.2 Calling symbolic routines from algebraic mode 27

algebraic;
hugo;

Variables which have not been declared share have different values in symbolic
and algebraic mode. Nevertheless a symbolic mode program has access to the
algebraic value of a symbol:

• reval(x): if the value of x is a symbol or if the parameter of reval is a
directly quoted symbol the function returns the algebraic value associated
with this symbol, e.g. reval(′y),

• setk(x,y) sets the algebraic value of the expression x which then must be
a symbol (or more general: a kernel) to y, e.g. setk(′z, reval′(plus u 17))
14

Of course a clever LISP programmer easily sees how REDUCE organizes the
assignment and storage of values to algebraic variables in property lists, and
he might be attempted to use this knowledge for “easier” access; please resist:
otherwise your program might not run in a future version of REDUCE.

5.2 Calling symbolic routines from algebraic mode

REDUCE offers various ways to use symbolic routines in algebraic mode such
that they appear on the algebraic level as genuine parts of REDUCE. These
mainly differ in their strategy of evaluating parameters (and results).

5.2.1 Common protocol

Some general protocol rules apply for REDUCE symbolic mode routines:

• A routine should check its parameters carefully; in the case of illegal
parameters the REDUCE error handlers should be invoked (see below).

• If a routine cannot process its parameters for mathematical reasons it
best returns the expression which had caused the call unchanged.

• Evaluators should operate silently; events such as messages needed for
testing and program development should be carried out in dependency of
a switch.

• A routine should return its result as a value rather than printing it; for
an isolated call in interactive mode a printed result would be sufficient,
but for following evaluation steps the availability of an algebraic value is
essential.

14Read “setk” as “set kernel value”, the REDUCE equivalent to the Standard LISP as-
signment function “setq”.

285 COMMUNICATION BETWEEN ALGEBRAIC AND SYMBOLIC MODES

5.2.2 Symbolic operator

The simplest way to link a symbolic procedure to algebraic mode is the symbolic
operator declaration. In that case the routine can be called by its proper name
in algebraic mode with REDUCE first evaluating its parameters to fully simpli-
fied algebraic forms. Upon return the result should also be an algebraic form
(or NIL). Example:

symbolic procedure my_plus(a,b);
begin scalar r;

print a; print b;
r := reval{’plus,a,b};
print r;
return r;

end;
symbolic operator my_plus;

This routine receives two algebraic expressions and computes their sum by
calling the algebraic evaluator. The calls the the LISP function print have
been inserted here and in the following examples to show you the forms passed
to the routine.

5.2.3 Polyfn

If the symbolic routine is specialized for computations with pure polynomials
it can be declared polyfn. REDUCE will evaluate the arguments for such a
routine to standard forms and expects that the result also will have that
form. Example:

symbolic procedure poly_plus(a,b);
begin scalar r;

print a; print b;
r := addf(a,b);
print r;
return r;

end;
put(’poly_plus,’polyfn,’poly_plus);

This routine also adds its arguments but it is specialized for polynomials. If
called with a non-polynomial form an error message will be generated. In the
put statement the first argument is the algebraic operator name and the third
one is the name of the associated evaluator function. These may differ.

5.2.4 Psopfn

The most general type of function is that of a psopfn. REDUCE will not
evaluate the parameters for such a routine, instead it passes the unevaluated
list of parameters to the function. The routine has to evaluate its parameters

5.2 Calling symbolic routines from algebraic mode 29

itself (of course using the services of reval and friends). So a psopfn can handle
variable numbers of parameters. The result must be an algebraic expression or
nil. Example:

symbolic procedure multi_plus0 u;
begin scalar r;

r:=0;
for each x in u do
<<x:=reval x; print x;
r:=reval{’plus,r,x}

>>;
print r;
return r;

end;

put(’multi_plus,’psopfn,’multi_plus0);

This routine can be called with an arbitrary number of parameters; it will eval-
uate them one after the other, add them by calling reval and return the sum
as result. Note that the name used in algebraic mode is multi plus which is
different from the name of the symbolic routine doing the work. This is neces-
sary because otherwise the argument count check of REDUCE would complain
as soon as the routine is called with more than one argument.

In the next example a psopfn implements an operator with a fixed number of
arguments; it expects two numbers as arguments and performs an extensive
checking as any such routine should do; again the name of the routine and the
algebraic mode operator are different:

symbolic procedure bin_plus0 u;
begin scalar p1,p2,r;
if length u neq 2 then rederr "illegal number of arguments";
p1:=reval car u; p2:=reval cadr u;
if not numberp p1 then typerr(p1,"number");
if not numberp p2 then typerr(p2,"number");
r:=p1+p2;
return r;

end;

put(’bin_plus,’psopfn,’bin_plus0);

The functions typerr and rederr are explained in the section error manage-
ment.

5.2.5 Simpfn

When you declare a new algebraic operator and want to assign a special evalu-
ation mode for it which cannot be written in algebraic mode (e.g. as a rule set)
you can create a simplifier which has the task to convert each operator expres-

305 COMMUNICATION BETWEEN ALGEBRAIC AND SYMBOLIC MODES

sion to a standard quotient. A simplifier function is linked to the operator by
the property simpfn and has one argument which is the unevaluated parameter
list of the operator expression. It will be called every time the operator appears
in an expression. It must return a standard quotient. Example:

algebraic operator op_plus;

symbolic procedure simp_op_plus u;
begin scalar r;

r:=simp 0;
for each x in u do
<<x:=simp x; print x;
r:=addsq(r,x)

>>;
return print r;

end;

put(’op_plus,’simpfn,’simp_op_plus);

In many cases the simpfn is the method of choice as it is best integrated into
the REDUCE evaluation process: its results can immediately be used for subse-
quent calculations while algebraic form results need to be converted to standard
quotients before combining them with other formulae.

Note that a simpfn which cannot simplify its argument must nevertheless re-
turn a standard quotient, then with the unevaluable form as kernel. E.g. a
function for supporting the algebraic evaluation of the operator “<”:

algebraic operator <;

symbolic procedure simp_lessp u;
begin scalar a1,a2,d;

a1:=simp car u; a2:=simp cadr u;
d:=subtrsq(a1,a2);
if domainp denr d and domainp numr d then
return if !:minusp numr d then simp 1 else simp 0;

return mksq({’lessp,prepsq a1,prepsq a2},1);
end;

put(’lessp,’simpfn,’simp_lessp);

Here all comparisons with numeric items are reduced to zero or one because of
the equivalence of zero and “false” in algebraic mode, while in all other cases
the non-evaluable expression is returned mapped by the function mksq which
converts an algebraic expression into a standard quotient, ensuring the identity
of composite kernels (see the section standard forms) .

5.3 Statements, forms 31

5.3 Statements, forms

An additional way to link symbolic entries to algebraic mode is to invent a new
syntactical unit. A REDUCE statement is introduced by assigning the property
stat = rlis to the leading keyword of the new statement. The corresponding
function will be called with one parameter which is a list of the (unevaluated)
parameters of the statement. A statement normally is called for its side effect
rather than for its value - so the result will be not interpreted as an algebraic
quantity (ws not set, printed as symbolic list etc.). Example:

put(’my_add,’stat,’rlis);

symbolic procedure my_add u;
begin scalar r;

r:= 0;
for each x in u do
<<x:=reval x;
r:=reval{’plus,x,r}

>>;
return r;

end;

to be called by a statement

my_add x,x^2,x^3;

A statement without parameters is introduced by the property - value pair stat
= endstat because the statement “end” is the most prominent representative
of this class.

For a more complicated syntax you can write a function which preprocesses a
statement before evaluating it. Such preprocessors are linked to the leading
keyword by the property formfn. However writing a formfn is rather difficult
as you will have to organize the reading of the rest of the statement yourself.
This approach is not recommended as the formfn interface is rather delicate
and might be subject to future changes.

5.4 Printing and messages

For printing in symbolic mode you can use the Standard LISP functions

print(u) print u with LISP syntax and following linefeed
prin1(u) print u with LISP syntax but without linefeed
prin2(u) print u without LISP syntax and without linefeed

prin2t(u) print u without LISP syntax but with linefeed
terpri() print a single linefeed

LISP syntax here means that a string is surrounded by string quotes and special
characters in a symbol are tagged by an exclamation mark.

32 6 ERROR MANAGEMENT

However if you want to print an algebraic expression in the same style as the
REDUCE write statement you should use the function writepri. This function
needs two arguments, the first one is the object to be printed which must be a
string, a number or an algebraic expresssion tagged with a dynamic quote, e.g.
using the function mkquote. The second argument is one of only, first, nil,
and last and controls linefeeds. Example:

<<u:=’(expt x 2);
writepri(" u= ",’first);
writepri(mkquote u,nil);
writepri(" printed in algebraic style",’last);

>>;

For printing one single algebraic form you can also use the function mathprint:

u := ’(expt x 3);
print u;
mathprint u;

6 Error management

6.1 Issue an error message

When programming an application in symbolic mode, it may be necessary to
report an exception to the user, e.g. if an algebraic prerequisite for applying
the algorithm is not fulfilled. There are several routines for signalling an error
in symbolic mode:

• The easiest way to complain about a bad algebraic form is to call typerr.
This function has two parameters typerr(exp, str): the first one is an
algebraic expression, the bad object, and the second one is a string which
describes what the object should have been. When printed REDUCE will
report exp in mathematical notation and insert a string “illegal as”. The
current program is terminated.

u := ’(plus x 1);
. . .

if not numberp u then typerr(u,"number");

• A general error can be reported using the function rederr; it prints some
asterisks and then its argument in pure LISP style (no mathematical
format); the argument can be a list - in that case the surrounding brackets
are omitted in output. The current program is terminated.

rederr "algorithm not applicable if denominator neq 1";
rederr {"never call me with ",u," again"};

• Similar to rederr the routine rerror terminates the run with an error
message; it has been designed for usage in a REDUCE package enabling
the error handler to localize the error reason and to provide additional

6.2 Catching errors 33

information to the end user (e.g. via a help system). It has 3 parameters:
rerror(pack, nbr,mess) where pack is the name of the package (usually
a quoted identifier), nbr is an integer error number local to the package,
beginning with 1 and mess is the error message just like rederr.

rerror(’asys,13,"remainder not zero");

Wherever possible rerror should be used instead of rederr.

6.2 Catching errors

On the other hand a symbolic program might want to react to an exception
which occurred in a calculation branch. REDUCE supports this by encapsula-
tion with the routines errorset* and errorset . You have to construct the
action to be encapsulated as a subroutine call in prefix LISP syntax which is
identical to algebraic form syntax: a list where the first element is the name of
the function (usually a quoted symbol) followed by the arguments; these must
be tagged by quote, best using the function mkquote. The second parameter
describes the error mode: if t, an eventual error during the evaluation will be
reported to the user, if nil the error message will be suppressed. errorset
additionally has a third parameter which tells the error manager whether to
print a backtrace or not in an error case. The result of these functions will be

• in the case of an error an error code (its form depends on the underlying
LISP system),

• otherwise the result of the computed value as car of a list.

You should use the function errorp for testing whether the call failed or not;
in the positive case pick out the result by a car access. Example:

begin scalar u,v;
. . .

q := errorset!*({’quotsq,mkquote(u),mkquote(v)},nil);
if errorp q then rederr "division failed" else

q:=car q;
. . .

Note that you cannot write the expression to be encapsulated in REDUCE
syntax here. And also ′(quotsq u v) would be incorrect because then u and
v were constants and not references to the local variables u and v. Only the
mkquote expressions guarantee that at run time a list is generated where the
values of u and v are inserted as parameters for the call.

7 Compiling, modules, packages

34 7 COMPILING, MODULES, PACKAGES

7.1 Program modules

It is a good practice to design a complex program group in separate modules
each residing in a separate source file. You can use the REDUCE statement
pair module - endmodule to reflect this structure. A module has a name which
often will be identical with its source file (without extension, of course). This
correspondence is not essential, but is very practical for the daily work. As a
side effect module switches automatically to symbolic mode during input and
endmodule switches back to the original mode. A typical module in a file would
look like

module alggeo1; % Primitives for algebraic geometry.

% Author: Hugo Nobody, Nirwanatown, Utopia.

....... the symbolic mode code

endmodule;
end;

If this module resides in a file alggeo1.red it can either be read into a REDUCE
session by

in "alggeo1.red"$

or it can be compiled to a fast loadable binary by

faslout "alggeo1";
in "alggeo1.red"$
faslend;

You then can load this module by load alggeo.

Although REDUCE currently does not yet rely exclusively on declarations exports
and imports , these should be used in order to be safe for the future. exports
should name all entry points which the module offers for external access and
imports is the list of modules or packages which the module needs at run time
or during compilation.

7.2 Packages

If your application consists of several modules you can design it as a package.
A package is a collection of modules which form a unit but allow you an in-
dividual management, e.g. updating and recompilation. A package is defined
by a header module which should have the name of the package as the module
name. This module then contains a declaration for the package by the function
create-package, which expects as first parameter a list of the modules which
belong to the package (this list must begin with the header package) and a
second dummy parameter to be set to nil (this parameter is meaningful only
for modules in the REDUCE kernel). Additionally the header module should

35

contain all global declarations for the complete package, e.g. fluid, global
declarations and exports and imports statements. Also, all macros, smacros
used in more than one module in the package should be defined in the header
module.

As long as you develop your application and frequently recompile single mod-
ules it would be practical to replace the function create-package by a loop
calling load package (please note the underscore: load-package is a different
function not usable here). You then can load the complete package by one call
to load package for the header module. Example:

module alggeo; % Algebraic geometry support.

% Author: Hugo Nobody, Nirwanatown, Utopia.

% create_package(’(alggeo alggeo1 alggeo2 alggeo3));
for each x in ’(alggeo1 alggeo2 alggeo3) do load x;

fluid ’(alggeo_vars!*);
exports ...

... and so on

endmodule;
end;

Later you can replace the load loop load by a correct create-package expres-
sion - you will then have to compile the object as one big binary with the header
module as the first entry.

For compiling you use the function faslout which creates a fast loading file -
see the corresponding section in the User’s manual.

8 Coding suggestions

In order to guarantee that your program is as portable and version independent
as possible the following rules may be useful. Note that these are recommen-
dations only - your program may do a good job for you even if you ignore all
of them.

• Don’t use functions from the underlying LISP which are not explicitly
part of REDUCE or standard lisp - they will probably be missing in
other support systems.

• Don’t rely on character case. Some implementations support upper case
output, others prefer lower case. As the tendency goes towards lower case,
the best policy is to use lower case characters only, except in strings or
comments.

• Use proper indentation. Take the REDUCE sources as example. If the in-
dentation corresponds to the block structure your programs will be better

36 9 APPENDIX: STANDARD LISP EXTENSIONS

readable.

• Don’t produce lines with more than 72 characters. There are still com-
puters and networks around which have problem if the size of the good
old punched card is exceeded.

• Write comments. The major entry point routines of your symbolic code
should have one comment line following the procedure declaration; this
comment should be one or more complete English sentences, beginning
with an upper case character and ending with a dot.

• Try to avoid name conflicts. It is a common policy to name global and
fluid variables with a trailing asterisk and to use a common name prefix
for the procedure names.

• If you produce a large piece of software, organize it as a REDUCE package.

9 Appendix: Standard LISP extensions

The following typical LISP functions are defined in the support module of the
rlisp package.

atsoc(u:any,p:alist)

Same as assoc, but using the operator eq instead of equal for the search. atsoc
can be applied only if the identity of the object to be searched for is guaranteed,
e.g. for symbols. It is substantially faster than assoc.

copyd(u:id,v:id)

Copies the procedure definition of v to the symbol u. Afterwards the procedure
can be called by using the name u. Frequently used for embedding a function,
e.g. for implementing a private trace:

if null getd ’myprog_old then copyd(’myprog_old,’myprog);
symbolic procedure myprog(u);

<<print {"calling myprog with parameter ",u};
myprog_old(u)>>

eqcar(u:any,v:any)

Implements the frequently needed test pairp u and car u eq v.

listp(u:any)

Returns t if u is a top level list ending with a nil.

mkquote(u:any)

37

tags u with a quote. This function is useful for cases where a LISP eval situation
is given, e.g. for coding for an errorset or for writepri.

reversip(u:list)

Reverses the elements of l in place - faster than reverse, but desctroys the input
list.

smember(u:any,v:any)

Similar to member this routine tests whether u occurs in the structure v, how-
ever in an arbitrarily deep nesting. While member tests only the top level list,
smember descends down all branches of the tree.

smemq(u:any,v:any)

Same as smember, however using eq as test instead of equal.

The following routines handle lists as sets (every element at most once):

union(u:any,v:any)

intersection(u:any,v:any)

setdiff(u:any,v:any)

The Standard LISP apply function requires that the parameters for the function
to be applied are encoded as a list. For standard cases of 1,2 or 3 parameters
the following variants allow an easier encoding:

apply1(u:id,u:any)

apply2(u:id,u:any,v:any)

apply3(u:id,u:any,v:any,w:any)

Index

*a2k, 20
*uncached, 18
., 7, 9
=, 13
{, 9
}, 9

algebraic form, 15
prefix, 15

addf, 22
addsq, 24
aeval, 4
aeval, 17
aeval*, 18
aglist*, 18
algebraic, 3
algebraic form, 4
algebraic forms, 9
alist, 14
append, 9
assoc, 14
association list, 14
atom, 9, 10

balanced mod, 19
Boolean value, 7

c...r, 9
car, 7, 9, 12
cdr, 7, 9, 12
coefficient domains, 19
collect, 11
compress, 6
cons, 7
constant, 4
create-package, 34

denr, 23
digit, 6
dmode*, 19
dmodeop module, 19
dname, 20
domain, 19
domainp, 22

dot notation, 8

endmodule, 34
endstat, 31
eq, 13
equal, 13
equation, 17
errorp, 33
errorset, 33
errorset*, 33
evallhseqp, 18
evaluation model, 3
exp, 25
explode, 6
expnd, 26
exports, 34
expr, 3

f2q, 23
factor, 25
factorizer, 25
false, 7
fctrf, 25
flag, 13
flagp, 13
fluid, 5
for each, 11
for statement, 5, 10
formfn, 31

gcdf, 25
gensym, 6
get, 13
getv, 15
global, 5

help, 33

id, 6
idp, 6
imports, 34
initvalue*, 5
integer, 5
intern, 6

join, 11

38

INDEX 39

kernel, 13
kernel, 20, 24, 27
kernel order, 21, 23
kord*, 21
korder, 21

lc, 22
ldeg, 22
length, 9
LISP, 2, 3
list, 7, 9
list notation, 8
liter, 6
local variables, 4

macro, 3
mathrpint, 32
matrix, 17
mcd, 25
member, 9
memq, 9
mkquote, 32, 33
mksp, 22
mksq, 30
mkvect, 15
mode prefix, 3
module, 34
multf, 22
multsq, 24
mvar, 22

nconc, 12
negf, 22
negsq, 24
nth, 9, 12
null, 9, 22
numberp, 6
numr, 23

off, 6
on, 6
ordop, 21
ordp, 21

package, 34
pair, 7
pairp, 7, 9
polyfn, 28

prepsq, 23
prop, 14
property, 13, 19
psopfn, 28
put, 13
putv, 15

qremf, 22
quote, 4
quotf, 22
quotsq, 24

red, 22
rederr, 29, 32
remflag, 13
remprop, 13
reorder, 23
rerror, 32
reval, 4
reval, 17, 27
reverse, 9
reversip, 12
rlis, 31

scalar, 5
setdmode, 19
setk, 27
setkorder, 21
sfp, 26
share, 6, 26
simp, 23
simpfn, 30
smacro, 3
standard form, 18, 21, 30
standard forms, 13
standard forms, 28
Standard LISP, 2
standard quotient, 16
standard quotient, 18, 23, 30
stat, 31
stringp, 6
subf, 24
subsq, 24
substituting, 24
subtrsq, 24
support, 2
switch, 5
symbol, 6

40 INDEX

symbolic, 3
symbolic operator, 28

tree, 7
true, 7
typerr, 29, 32

uncached, 18
upbv, 15

vector, 15

write, 32
writepri, 32
WS, 31

	Introduction
	Very short course on RLISP
	What is RLISP
	Modes, function classes
	Evaluation model, symbols, and variables
	Variable types
	Symbols, numbers and strings
	Boolean values
	Pairs, lists

	Programming with lists
	In-place operations
	Equal tests: Equality vs. Identity
	Properties, Flags
	Alists
	Vectors

	Algebraic data formats and evaluation
	Prefix forms
	*SQ
	Composite forms
	Lists, equations
	Matrices

	Algebraic evaluator: reval, aeval, aeval*

	Standard Forms, Standard Quotients
	Introduction
	Coefficients
	Generic arithmetic with domain elements
	Kernels, kernel order
	Standard form structure
	Operations on standard forms
	Reordering
	Standard Quotients
	Substitutions
	Useful facilities for standard forms
	Kernel list
	Greatest common divisor
	Factorization

	Variant: non-expanded standard form

	Communication between algebraic and symbolic modes
	Algebraic variables
	Calling symbolic routines from algebraic mode
	Common protocol
	Symbolic operator
	Polyfn
	Psopfn
	Simpfn

	Statements, forms
	Printing and messages

	Error management
	Issue an error message
	Catching errors

	Compiling, modules, packages
	Program modules
	Packages

	Coding suggestions
	Appendix: Standard LISP extensions

