Debugging in REDUCE

H. Melenk

Konrad—Zuse—Zentrum
fur Informationstechnik Berlin
Takustrasse 7
D-14915 Berlin-Dahlem
Federal Republic of Germany

Email: melenk@zib.de

1 Introduction

The module rdebug supports the use of the trace and break debugging fa-
cilities of Portable Standard LISP (PSL) for REDUCE programming. These
include

e Entry-Exit tracing of functions,
e Assignment tracing,

e Setting of break points,

e Conditional trace and break.

e Trace of rules when they fire.

In contrast to the bare LISP level tracing the values are printed in alge-
braic style whenever possible. The output has been specially tailored for
the needs of algebraic mode programming. Most features can be applied
without modifying the target program, and they can be turned on and off
dynamically at run time.

To make the facilities available, load the module by a command
load rdebug.

Restriction: the investigated program should not be compiled, when the
trst functions are to be applied.

2 TRACE: TR, UNTR 2

2 Trace: TR, UNTR

The command tr puts one or several procedures to under trace. Every time
such a function is executed, a message is printed during the procedure entry
and another one is generated at the return time. The entry message records
the actual procedure arguments equated to the dummy parameter names,
and at the exit time the procedure value is printed. Recursive calls are
marked by an indentation and a level number.

tr <procl>,<proc2>,...,<procn>;

Here < procl >, < proc2 >,...,< procn > are names of procedures to be
added to the set of traced procedures. Tracing is stopped for one or several
functions by the command untr:

untr <procl>,<proc2>,...,<procn>;

3 Assignment Trace: TRST, UNTRST

One often needs information about the inner behavior of a procedure, es-
pecially if it is a longer piece of code. For a procedure declared in a trst
command

trst <procl>,<proc2>,...,<procn>;

all executed explicit assignments and passed labels inside these procedures
are printed during procedure execution. For removing the extended trace
use a statement untrst or untr:

untrst <procl>,<proc2>,...,<procn>;

Note: When your program contains a for loop, REDUCE translates this
to a sequential piece of LISP instructions. When using trst, the printout
is driven by the unfolded code. When the code contains a for each in
command, the name of the control variable is internally used to keep the
remainder of the list during the loop control, and you will see the corre-
sponding assignments in the printout rather than the individual values in
the loop steps. E.g.

procedure fold(u); for each x in u sum x;
trst fold;
fold {z,z*y,y};

4 CONDITIONAL TRACING: TRWHEN 3

produces the following output:

fold being entered
u: {z,y*z,y}$
x := (z,y*z,y7)$

g0003 := 0%

g0003 := z$

x = (y*z,y)$

g0003 := y*z + z$

x = (y)$

g0003 := y*xz + y + z$
x := 0%

fold = y*z + y + z$

In this example the printed assignments for x show the various stages of the
loop control. The variable g0003 is an internally generated slot for the sum.

4 Conditional tracing: TRWHEN

The trace output can be tunrned on or off automatically by a boolean ex-
pression which is linked to a traced procedure by the command trwhen:

trwhen <name>,<boolean-expr>;

The boolean expression must follow standard REDUCE syntax. It may con-
tain references to global values and to the actual parameters of the proce-
dure. As long as the procedure is not compiled, the original names of the
dummy arguments are used. For a compiled procedure the original names
are not available; instead the names al, a2, ... must be used. Example: the
following procedure produces trace output only if the main variable of its
argument is x:

procedure hugo(u); otto(u);
tr hugo;
trwhen hugo,mainvar (u)=x;

Note: for a symbolic procedure, the trwhen command must be given in
symbolic mode or with prefix symbolic.

5 BREAKPOINTS: BR, UNBR 4

5 Breakpoints: BR, UNBR

A break loop is an interrupt of the program execution where control is given
temporarily to the terminal for entering commands in a standard command
— evaluate — print loop. When a break occurs, you can inspect the cur-
rent environment or even alter it, and the interrupted computation may be
terminated or continued [. A break can be caused

e by an internal error,
e by an explicit call of the function break,

e at entry and exit time of a procedure.

5.1 Break switch

When the switch break is set on, every evaluation error causes a break loop.
Most of these breaks are non-continuable; however, you have the opportunity
to read the actual values of local variables in the environment which caused
the error.

5.2 Break call

A call
lisp break();

initiates an “programmed” break loop. In contrast to explicitly introduced
write statements, a break loop allows you to read actual values dynamically,
e.g. if you don’t know the critical variables in advance.

5.3 Breakpoint declaration

When the command br is given for a set of procedures, the program execu-
tion is interrupted every time such a procedure is entered and for a second
time when it is left.

br <procl>,<proc2>,...,<procn>;

INot all cases allow a continuation.

5 BREAKPOINTS: BR, UNBR)

The break property can be removed by calling the command unbreak

unbr <procl>,<proc2>,...,<procn>;

5.4 Break loop control

In a break situation the evaluation is stopped temporarily and the control
returns to the terminal with a special prompt:

break[1]1:

The number in square brackets counts the break level - it is increased when a
break occurs inside a break; the normal REDUCE statement counter follows.
Each break loop supports its own statement numbers and input and output
buffers. After terminating of a break loop the previous statement counters
and buffers are restored.

In a break loop all REDUCE commands can be entered. Additionally, there
is a set of single character commands which allow you to control the break
environment. All these begin with an underscore character:

_a; terminate break and return to the top REDUCE level
_c; continue execution of interrupted procedure
{i; print a backtrace (list of procedures in the call hierarchy)
_l <var>; read the content of the local variable <var>
-m; print the last (LISP-) error message
_q; terminate the break loop and return to the next higher level

Global variables can be accessed as usual in the REDUCE language. They
can also be set to different values in the break loop. The inspect values
assigned to dummy arguments and scalar variables of procedures in the
actual call hierarchy, you need a special command _I. These values cannot
be altered in the break loop. Example:

procedure pl(x);
begin scalar yl; yl:=x"2; return p2(yl); end;
procedure p2(q); q°2;
br p2;
X:=22;
pl(alpha);

In the corresponding break loop caused by calling p2 indirectly via pl, you
can access the global z, the local x and y1 of pl and the q of p2:

6 CONDITIONAL BREAK: BRWHEN 6

p2 being entered

q: alphax*2$
Break before entering ‘p2’

break[1]1: x;

22

break[1]2: _1 x;

alpha

break[1]3: _1 yi;
2

alpha

break[1]4: _1 q;
2
alpha
break[1]6: _c;
Break after call ‘p2’, value ‘(expt (expt alpha 2) 2)’
break[1]1: _c;
4

alpha

6 Conditional break: BRWHEN

A break depending on a condition can be assigned to a procedure using the
command brwhen

7 TRACE FOR RULES AND RULE SETS: TRRL, UNTRRL 7

brwhen <name>,<boolean-expr>;

The conventions correspond to those of trwhen.

7 Trace for rules and rule sets: TRRL, UNTRRL

The command trrl allows you to trace individual rules or rule sets when
they fire.

trrl <rsi1>,<rs2>,...,<rsn>;
where each of the < rs; > is
e a rule or a rule set,

e a name of a rule or rule set (that is a non—indexed variable which is
bound to a rule or rule list),

e an operator name, representing the rules assigned to this operator.

The specified rules are (re-) activated in REDUCE in a style that each of
them prints a report every time if fires. The report is composed of the name
or the rule or the name of the rule set plus the number of the rule in the set,
the form matching the left hand side (“input) and the resulting right hand
side (“output). For an explicilty given rule, trrl assigns a generated name.

With untrrl you can remove the tracing from rules
untrrl <rsi1>,<rs2>,...,<rsn>;

The rules are reactivated in their original form. Alternatively you can use
the command clearrules to remove the rules totally from the system. Please
do not modify the rules between trrl and untrrl — the result may be un-
predictable.

8 Output control: TROUT, TRLIMIT

The trace output can be redirected to a separate file by using the command
trout, followed by a file name in string quotes. A second call of trout closes
the actual output file and assigns a new one. The file name NIL (without
string quotes) causes the trace output to be redirected to the standard out-
put device.

8 OUTPUT CONTROL: TROUT, TRLIMIT 8

Remark: under Windows a file name starting with “win:” causes a new
window to be opened which receives the complete output of the debugging
services.

The integer valued share variable trlimit defines an upper limit for the
number of items printed in formula collections, e.g. when tracing a for
each loop. The initial value is 5. A different value can be assigned to
increase or lower the output size.

If you want to select LISP style printing during trace, set
lisp(trprinter!* := ’printx);

after loading rdebug.

	Introduction
	Trace: TR, UNTR
	Assignment Trace: TRST, UNTRST
	Conditional tracing: TRWHEN
	Breakpoints: BR, UNBR
	Break switch
	Break call
	Breakpoint declaration
	Break loop control

	Conditional break: BRWHEN
	Trace for rules and rule sets: TRRL, UNTRRL
	Output control: TROUT, TRLIMIT

