RESIDUE Package for REDUCE

Wolfram Koepf email: Koepf@zib.de

April 1995 : ZIB Berlin

This package supports the calculation of residues. The residue $\mathop{\mathrm{Res}}_{z=a} f(z)$ of a function f(z) at the point $a \in \mathbb{C}$ is defined as

$$\operatorname{Res}_{z=a} f(z) = \frac{1}{2\pi i} \oint f(z) \, dz \;,$$

with integration along a closed curve around z=a with winding number 1. If f(z) is given by a Laurent series development at z=a

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - a)^k ,$$

then

$$\operatorname{Res}_{z=a} f(z) = a_{-1} \ .$$
 (1)

If $a = \infty$, one defines on the other hand

$$\operatorname{Res}_{z=\infty} f(z) = -a_{-1} \tag{2}$$

for given Laurent representation

$$f(z) = \sum_{k=-\infty}^{\infty} a_k \, \frac{1}{z^k} \, .$$

The package is loaded by the statement

1: load residue;

It contains two REDUCE operators:

- residue(f,z,a) determines the residue of f at the point z=a if f is meromorphic at z=a. The calculation of residues at essential singularities of f is not supported.
- poleorder(f,z,a) determines the pole order of f at the point z=a if f is meromorphic at z=a.

Note that both functions use the taylor package in connection with representations (1)–(2).

Here are some examples:

```
1
9: poleorder(\sin(x)/x^2,x,0);
1
10: residue((1+x^2)/(1-x^2),x,1);
-1
11: poleorder((1+x^2)/(1-x^2),x,1);
1
12: residue((1+x^2)/(1-x^2),x,-1);
1
13: poleorder((1+x^2)/(1-x^2),x,-1);
1
14: residue(tan(x),x,pi/2);
-1
15: poleorder(tan(x),x,pi/2);
1
16: residue((x^n-y^n)/(x-y),x,y);
0
17: poleorder((x^n-y^n)/(x-y),x,y);
0
```

```
18: residue((x^n-y^n)/(x-y)^2,x,y);
 n
y *n
 У
19: poleorder((x^n-y^n)/(x-y)^2,x,y);
1
20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
-2
21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
1
22: for k:=1:2 \text{ sum residue}((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
    part(part(solve(d+e*x+f*x^2,x),k),2));
b*f - c*e
     2
    f
23: residue(x^3/\sin(1/x)^2,x,infinity);
 - 1
  15
24: residue(x^3*\sin(1/x)^2,x,infinity);
-1
Note that the residues of factorial and \Gamma function terms are not yet sup-
ported.
```