
Tracing in REDUCE

Herbert Melenk

Konrad–Zuse–Zentrum
für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem

Federal Republic of Germany

E-mail: melenk@zib.de

Francis J. Wright

School of Mathematical Sciences
Queen Mary and Westfield College, University of London

Mile End Road, London E1 4NS, UK.

E-mail: F.J.Wright@QMW.ac.uk
http://www.maths.qmw.ac.uk/~fjw/

14 March 1999

1 Introduction

The package rtrace provides portable tracing facilities for REDUCE pro-
gramming. These include

• entry-exit tracing of procedures,

• assignment tracing of procedures,

• tracing of rules when they fire.

In contrast to conventional Lisp-level tracing, values are printed in algebraic
style whenever possible if the switch rtrace is on, which it is by default.
The output has been specially tailored for the needs of algebraic-mode pro-
gramming. Most features can be applied without explicitly modifying the
target program, and they can be turned on and off dynamically at run time.

1

2 RTRACE VERSUS RDEBUG 2

If the switch rtrace is turned off then values are printed in conventional
Lisp style, and the result should be similar to the tracing provided by the
underlying Lisp system.

To make the facilities available, load the package using the command

load_package rtrace;

Alternatively, the package can be set up to auto load by putting appropriate
code in your REDUCE initialisation file. An example is provided in the file
reduce.rc in the rtrace source directory.

2 RTrace versus RDebug

The rtrace package is a modification (by FJW) of the rdebug package
(written by HM, and included in the rtrace source directory). The modifi-
cations are as follows. The procedure-tracing facilities in rdebug rely upon
the low-level tracing facilities in PSL; in rtrace these low-level facilities
have been (partly) re-implemented portably. The names of the tracing com-
mands that have been re-implemented portably have been changed to avoid
conflicting with those provided by the underlying Lisp system by preceding
them with the letter “r”, and they provide a generalized interface that sup-
ports algebraic mode better. An additional set of rule tracing facilities for
inactive rules has been provided. Beware that the rtrace package is still
experimental!

This package is intended to be portable, and has been tested with both CSL-
and PSL-based REDUCE. However, it is intended not as a replacement for
rdebug but as a partial re-implementation of rdebug that works with CSL-
REDUCE, and it is assumed that PSL users will continue to use rdebug. It
should, in principle, be possible to use both. Any rtrace functions with the
same names as rdebug functions should either be identical or compatible;
rtrace should be loaded after rdebug in order to retain any enhancements
provided by rtrace. Perhaps at some future time the two packages should be
merged. However, note that rtrace currently provides only tracing (hence
the name) and does not support break points. (The current version also
does not support conditional tracing.)

3 PROCEDURE TRACING: RTR, UNRTR 3

3 Procedure tracing: RTR, UNRTR

Tracing of one or more procedures is initiated by the command rtr:

rtr <proc1>, <proc2>, ..., <procn>;

and cancelled by the command unrtr:

unrtr <proc1>, <proc2>, ..., <procn>;

Every time a traced procedure is executed, a message is printed when the
procedure is entered or exited. The entry message displays the actual pro-
cedure arguments equated to the dummy parameter names, and the exit
message displays the value returned by the procedure. Recursive calls are
marked by a level number. Here is a (simplistic) example, using first the
default algebraic display and second conventional Lisp display:

algebraic procedure power(x, n);
if n = 0 then 1 else x*power(x, n-1)$

rtr power;

(power)

power(x+1, 2);

Enter (1) power
x: x + 1$
n: 2$

Enter (2) power
x: x + 1$
n: 1$

Enter (3) power
x: x + 1$
n: 0$

Leave (3) power = 1$
Leave (2) power = x + 1$
Leave (1) power = x**2 + 2*x + 1$

2
x + 2*x + 1

3 PROCEDURE TRACING: RTR, UNRTR 4

off rtrace;

power(x+1, 2);

Enter (1) power
x: (plus x 1)
n: 2

Enter (2) power
x: (plus x 1)
n: 1

Enter (3) power
x: (plus x 1)
n: 0

Leave (3) power = 1
Leave (2) power = (!*sq ((((x . 1) . 1) . 1) . 1) t)
Leave (1) power = (!*sq ((((x . 2) . 1) ((x . 1) . 2) . 1) . 1) t)

2
x + 2*x + 1

on rtrace;

unrtr power;

(power)

Many algebraic-mode operators are implemented as internal procedures with
different names. If an internal procedure with the specified name does not
exist then rtrace tracing automatically applies to the appropriate internal
procedure and returns a list of the names of the internal procedures, e.g.

rtr int;

(simpint)

This facility is an extension of the rdebug package.

Tracing of compiled procedures by the rtrace package is not completely re-
liable, in that recursive calls may not be traced. This is essentially because
tracing works only when the procedure is called by name and not when it is

4 ASSIGNMENT TRACING: RTRST, UNRTRST 5

called directly via an internal compiled pointer. It may not be possible to
avoid this restriction in a portable way. Also, arguments of compiled proce-
dures are not displayed using the names given to them in the source code,
because these names are no longer available. Instead, they are displayed
using the names Arg1, Arg2, etc.

4 Assignment tracing: RTRST, UNRTRST

One often needs information about the internal behaviour of a procedure,
especially if it is a longer piece of code. For an interpreted procedure declared
in an rtrst command:

rtrst <proc1>, <proc2>, ..., <procn>;

all explicit assignments executed (as either the symbolic-mode setq or the
algebraic-mode setk) inside these procedures are displayed during procedure
execution. All procedure tracing (assignment and entry-exit) is removed by
the command unrtrst (or unrtr, for which it is just a synonym):

unrtrst <proc1>, <proc2>, ..., <procn>;

Assignment tracing is not possible if a procedure is compiled, either because
it was loaded from a “fasl” file or image, or because it was compiled as it
was read in as source code. This is because assignment tracing works by
modifying the interpreted code of the procedure, which must therefore be
available.

Applying rtr to a procedure that has been declared in an rtrst command,
or vice versa, toggles the type of tracing applied (and displays an explanatory
message).

Note that when a program contains a for loop, REDUCE translates this to
a sequence of Lisp instructions. When using rtrst, the printout is driven by
the “unfolded” code. When the code contains a for each ... in state-
ment, the name of the control variable is internally used to keep the re-
mainder of the list during the loop, and you will see the corresponding
assignments in the trace rather than the individual values in the loop steps,
e.g.

procedure fold u;
for each x in u sum x$

5 TRACING ACTIVE RULES: TRRL, UNTRRL 6

rtrst fold;

(fold)

fold {z, z*y, y};

produces the following output (using CSL-REDUCE):

Enter (1) fold
u: {z,y*z,y}$

x := [z,y*z,y]$
G0 := 0$
G0 := z$
x := [y*z,y]$
G0 := z*(y + 1)$
x := [y]$
G0 := y*z + y + z$
x := []$
Leave (1) fold = y*z + y + z$

y*z + y + z

unrtrst fold;

(fold)

In this example, the printed assignments for x show the various stages of the
loop. The variable G0 is an internally generated place-holder for the sum,
and may have a slightly different name depending on the underlying Lisp
systems.

5 Tracing active rules: TRRL, UNTRRL

The command trrl initiates tracing when they fire of individual rules or
rule lists that have been activated using let.

trrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

5 TRACING ACTIVE RULES: TRRL, UNTRRL 7

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which
is bound to a rule or rule list);

• an operator name, representing the rules assigned to this operator.

The specified rules are (re-) activated in REDUCE such that each of them
prints a report every time it fires. The report is composed of the name of the
rule or the name of the rule list together with the number of the rule in the
list, the form matching the left side (“input”) and the resulting right side
(“output”). For an explicitly given rule or rule list, trrl assigns a unique
generated name.

Note, however, that trrl does not trace rules with constant expressions on
the left, on the assumption that they are not particularly interesting. [This
behaviour may be made user-controllable in a future version.]

The command untrrl removes the tracing from rules:

untrrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which
is bound to a rule or rule list or a unique name generated by trrl);

• an operator name, representing the rules assigned to this operator.

The rules are reactivated in their original form. Alternatively you can use the
command clearrules to remove the rules totally from the system. Please
do not modify the rules between trrl and untrrl – the result may be
unpredictable.

Here are two simple examples that show tracing via the rule name and via
the operator name:

trigrules := {sin(~x)^2 => 1 - cos(x)^2};

2 2
trigrules := {sin(~x) => 1 - cos(x) }

let trigrules;
trrl trigrules;

6 TRACING INACTIVE RULES: TRRLID, UNTRRLID 8

1 - sin(x)^2;

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl trigrules;
trrl sin;

1 - sin(x)^2;

Rule sin.23: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl sin;
clearrules trigrules;

6 Tracing inactive rules: TRRLID, UNTRRLID

The command trrlid initiates tracing of individual rule lists that have been
assigned to variables, but have not been activated using let:

trrlid <rlid1>, <rlid2>, ..., <rlidn>;

where each of the < rlidi > is an identifier of a rule list (that is, a non-
indexed variable which is bound to a rule list). It is assumed that they will
be activated later, either via a let command or by using the where operator.
When they are activated and fire, tracing output will be as if they had been
traced using trrl. The command untrrlid clears the tracing. This facility
is an extension of the rdebug package.

Here is a simple example that continues the example above:

trrlid trigrules;

1 - sin(x)^2 where trigrules;

7 OUTPUT CONTROL: RTROUT 9

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrlid trigrules;

7 Output control: RTROUT

The trace output (only) can be redirected to a separate file by using the
command rtrout, followed by a file name in string quotes. A second call of
rtrout closes any current output file and opens a new one. The file name
NIL (without string quotes) closes any current output file and causes the
trace output to be redirected to the standard output device.

The rdebug variables trlimit and trprinter!* are not implemented in
rtrace. If you want to select Lisp-style tracing then turn off the switch
rtrace:

off rtrace;

after loading the rtrace package. Note that the rtrace switch controls the
display format of both procedure and rule tracing.

