SCOPE 1.5
A Source-Code Optimization PackagEk

for
REDUCE 3.6

User’s Manual

J.A. van Hulzen
University of Twente, Department of Computer Science

P.O. Box 217, 7500 AE Enschede, The Netherlands
Email: infhvh@cs.utwente.nl

Abstract

The facilities, offered by SCOPE 1.5, a Source-Code Optimization Packagk
for REDUCE 3.6, are presented. We discuss the user aspects of the pack-
age. The algorithmic backgrounds are shortly summarized. Examples of

straightforward and more advanced usage are shown, both in algebraic and
symbolic mode. Possibilities for a combined use of GENTRAN and SCOPE

are presented as well.

© J.A. van Hulzen, University of Twente. All rights reserved.

Contents

1 Introduction 1
2 Preliminaries 3
2.1 History and Present Status 3
2.2 Acknowledgements, 4
2.3 The Optimization Strategy in a Birds-eye View 4
2.4 The Interplay between GENTRAN and SCOPE 1.5 7

3 The Basic SCOPE 1.5 Facilities in the Algebraic Mode 10

3.1 The OPTIMIZE command: Straightforward use 11
3.2 The function ALGOPT: Straightforward use 34
4 Special SCOPE 1.5 Features 51
4.1 Towards a SCOPE 1.5 Library 51
4.2 Structure Recognition: GSTRUCTR and ALGSTRUCTR 55
4.3 Horner-rules: GHORNER and ALGHORNER 59
5 File Management and Optimization Strategies 64
6 Generation of Declarations 72
6.1 Coefficient Arithmetic and Precision Handling 7
7 Dealing with Data Dependencies 84
8 A Combined Use of GENTRAN and SCOPE 1.5 94
9 Symbolic Mode Use of SCOPE 1.5 106

10 A Syntax Summary of SCOPE 1.5 114

10.1 SCOPE’s Toplevel Commands 114
10.2 Additional SCOPE-functions, 118
10.3 The relevant REDUCE, GENTRAN and SCOPE switches . . 118

11 SCOPE 1.5 Installation Guide 121

References 125

1 INTRODUCTION 1

1 Introduction

An important application of computer algebra systems is the generation
of code for numerical purposes via automatic or semi-automatic program
generation or synthesis. GENTRAN [?, ?, ?, 7], a flexible general-purpose
package, was especially developed to assist in such a task, when using MAC-
SYMA or REDUCE. Attendant to automatic program generation is the
problem of automatic source-code optimization. This is a crucial as-
pect because code generated from symbolic computations often tends to be
made up of lengthy arithmetic expressions. Such lengthy codes are grouped
together in blocks of straight-line code in a program for numerical purposes.
The main objective of SCOPE, our source-code optimization package, has
been minimization of the number of (elementary) arithmetic operations in
such blocks. This can be accomplished by replacing repeatedly occuring
subexpressions, called common subexpressions or cse’s for short, by place-
holders. We further assume that new statements of the form ”placeholder
:= cse” are inserted correctly in the code. This form of optimization is
often helpful in reducing redundancy in (sets of) expressions. A recent ap-
plication, code generation for an incompressible Navier-Stokes problem [?],
showed reduction from 45.000 lines of FORTRAN code to 13.000 lines.

Optimizing compilers ought to deal effectively and efficiently with the aver-
age, hand coded program. The enormous, arithmetic intensive expressions,
easily producable by a computer algebra system, fall outside the range of
the FORTRAN programs, once analyzed and discussed by Knuth [?]. He
suggested that optimization of the arithmetic in such a program is slightly
overdone. The usual compiler optimization strategy is based on easy detec-
tion of redundancy, without assuming the validity of (some) algebric laws
(see for instance [?]) Our optimization strategy however, requires the va-
lidity of some elementary algebraic laws. We employ heuristic techniques
to reduce the arithmetic complexity of the given representation of a set E;,
of input statements, thus producing a set Eg,; of output assignment state-
ments. E;, and E,,; define blocks of code, which would compute the same
exact values for the same exact inputs, thus implicitly proving the correct-
ness of the underlying software. Obviously the use of E,,; ought to save a
considerable amount of execution time in comparison with the application of
Ein. Johnson et al [?] suggest that such transformations do not destabilize
the computations. However this is only apparent after a careful error anal-
ysis of both E;;, and Eyy;. In view of the size of both E;;, and E,,; such an

1 INTRODUCTION 2

analysis has to be automatized as well. Work in this direction is in progress
(7,7, 7].

Although the use of SCOPE can considaribly reduce the arithmetic complex-
ity of a given piece of code, we have to be aware of possible numerical side
effects. In addition we have to realize that a mapping is performed from one
source language to another source language, seemingly without taking into
account the platform the resulting numerical code has to be executed on.
Seemingly, because we implemented some facilities for regulating minimal
expression length and for producing vector code.

This manual is organized as follows. We begin with some preliminary re-
marks in section 2. The history and the present status, the optimization
strategy and the interplay between GENTRAN and SCOPE are shortly
summarized. The basic algebraic mode facilities are presented in section 3.
Special SCOPE features are discussed in section 4. Besides facilities for
Horner-rules and an extended version of the REDUCE function structr,
we introduce some tools for extending SCOPE with user defined specialties.
File management follows in section 5. In section 6 declaration handling and
related issues are discussed, before illustrating our strategy concerning data
dependencies and generation of vector code in section 7. In section 8 is
shown how a combined used of GENTRAN and SCOPE can be profitable
for program-generation. The use of SCOPE in symbolic mode is presented
in section 9. A SCOPE syntax summary is given in section 10. For com-
pleteness we present guidelines for installing the package in the last section.

Requests

e Comment and complaints about possible bugs can be send to the au-
thor using the e-mail address infhvh@cs.utwente.nl. A compact piece
with REDUCE code, illustrating the bug, is prefered.

e When SCOPE 1.5 is used in prepairing results, presented in some
publication, reference to its use is highly appreciated. A copy of the
published document as well.

2 PRELIMINARIES 3

2 Preliminaries

For completeness we present a historical survey, a birds-eye view of the
overall optimization strategy and the interplay between GENTRAN and
SCOPE.

2.1 History and Present Status

The first version of the package was designed to optimize the description
of REDUCE-statements, generated by NETFORM [?, ?]. This version was
tailored to a restrictive class of problems, mainly occurring in electrical
network theory, thus implying that the right-hand sides (rhs’s) in the in-
put were limited to elements of Z2[V], where V is a set of identifiers. The
second version [?] allowed rhs’s from Z[V]. For both versions the validity
of the commutative and the associative law was assumed. A third ver-
sion evolved from the latter package by allowing to apply the distributive
law, i.e. by replacing (sub)expressions like a.b + a.c by a.(b + ¢) when-
ever possible. But the range of possible applications of this version was
really enlarged by redefining V as a set of kernels, implying that almost
any proper REDUCE expression could function as a rhs. The mathematical
capabilities of this version are shortly summarized in [?], in the context of
code generation and optimization for finite-element analysis. This version
was further extended [?] with a declaration-module, in accordance with the
strategy outlined in [?], chapter 6. It is used in combination with GEN-
TRAN, for the construction of Jacobians and Hessians [?, 7] and also in
experiments with strategies for code vectorization [?]. In the meantime the
Jacobian-Hessian production package, at present called GENJAC, is further
extended with possibilities for global optimization and with some form of
loop-differentiation. So in stead of optimizing separate blocks of arithmetic
we are now able to optimize complete programs, albeit of a rather specific
syntactical structure [?]. The present 1.5 version of SCOPE, is an interme-
diate between the distributed first version and the future, second version.
Version 2 is currently in development and will contain, besides the already
existing common sub expression (cse) searches, facilities for structure and
pattern recognition. The 1.5 version permits -using the present REDUCE
terminology- rounded coefficients, based on the domain features, described
in [?], discovery and adequate treatement of a variety of data dependencies,
and quotient-optimization, besides a collection of other improvements and

2 PRELIMINARIES 4

refinements for using the facilities in the algebraic mode. Furthermore, an
increased flexibility in the interplay between GENTRAN and SCOPE is ac-
complished. It is used for experiments concerning automatic differentiation
[?], symbolic-numeric approaches to stability analysis [?, ?] and for code
generation for numerically solving the Navier-Stokes equations for incom-
pressible flows [?]. An interesting example of its use elsewhere can be found
in [?7].

2.2 Acknowledgements

Many discussions with Victor V. Goldman, Jaap Smit and Paul S. Wang
have contributed to the present status of SCOPE. I express my gratitude to
the many students, who have also contributed to SCOPE, either by assist-
ing in designing and implementing new facilities, or by applying the package
in automated program generation projects in and outside university, thus
showing shortcomings and suggesting improvements and extensions. I men-
tion explicitly Frits Berger, Johan de Boer, John Boers, Pim Borst, Barbara
Gates, Marcel van Heerwaarden, Pim van den Heuvel, Ben Hulshof, Emiel
Jongerius, Steffen Posthuma, Anco Smit, Bernard van Veelen and Jan Ver-
heul.

2.3 The Optimization Strategy in a Birds-eye View

In [?, 7] we described the overall optimization strategy used for SCOPE as
a composite function R~ o T o R. The function R defines how to store the
input E¢ in an expression database Dg. The inverse function R™! defines
the output production. The function T defines the optimization process it-
self. It essentially consists of a heuristic remodeling of the (extendable and
modifiable) expression database in combination with storing information re-
quired for a fast retrieval and correct insertion of the detected cse’s in the
output. This is accomplished by an iteratively applied search, resulting in
a stepwise reduction of the arithmetic complexity of the input set, using an
extended version of Breuer’s grow factor algorithm [?, 7, ?]. It is applied
until no further profit is gained, i.e. until the reduction in arithmetic com-
plexity stops. Before producing output, a finishing touch can be performed
to further reduce the arithmetic complexity with some locally applied tech-
niques. Hence T is also a composite function. The overall process can be

2 PRELIMINARIES 5

summarized as follows:

R : En = Eg — (Do, profity)

Tﬁ : (Di,proﬁti) — (DH_l,pI‘OﬁtH_l) , 1 =0,..., A—1.
F : (Dy,profity) — Dy

R™! Dy — E)x = Eout

Dy is created as a result of an R-application performed on input Eg. The
termination condition depends on some profit criterion related to the arith-
metic complexity of the latest version of the input, D;. Hence we assume
profit; = true for i = 0, ---, A — 1 and profity, = false. The function T is
defined by T =F o Tg, where T3 defines one iteration step, i.e. one appli-
cation of the extended version of Breuer’s algorithm, and where F defines a
finishing touch, resulting in the final version D) of Dg, used to produce the
output Ey. It is stated in [?] that the computing time for Tg is O(n.m),
where n is the size of E;, and m the number of cse’s found during this pro-
cess. Practical experience showed that the finishing touch can take about
10 % of the actual cpu-time and that its real profit is limited. Therefore its
use is made optional.

The wish to optimize source code, defining arithmetic, usually leads an
attempt to minimize the arithmetic complexity. This can be accomplished
by replacing cse’s by placeholders, assuming a new assignment statement
"placeholder := cse” is correctly inserted in the code. So most of the cse-
searches are done in right hand sides of arithmetic assignment statements.

The search strategy depends on the permissible structure of the arithmetic
expressions. We assume these expressions to be multivariate polynomials or
rational functions in a finite set of kernels, and presented in some normal
form. Let us further assume that scalar placeholders are substituted for the
non-scalar kernels, such that back-substitution remains possible, using an
adequate information storage mechanism. Then we are left with the inter-
esting question how to define a minimal set of constituents of multivariate
polynomials in some normal form norm. Let us take as an example of such
a polynomial or rational function p = 3a + 2b + 3b?c(3a + 2b)(c + d)?. We
easily recognize linear forms, i.e. 3a + 2b (twice) and ¢ + d, possibly raised
to some power ((c+ d)2), power products, such as b%c, or monomial parts
of products, i.e. 3b%c. Hence with some imagination, one realizes that every
polynomial can be decomposed in a set of linear forms and a set of power
products. When assuming the validity of the commutative and the asso-
ciative law, one can also realize that we can associate a coefficient matrix

2 PRELIMINARIES 6

with the linear forms and an exponent matrix with the power products. The
rows can correspondent with (sub)expressions and the columns with scalar
identifiers. The entries are either coefficients or exponents. It is therefore
conceivable to make a parser, mapping a set of REDUCE expressions in a
database, consisting of two incidence matrices and a function table, such that
the original expressions can be retrieved. Taking a group of assignmemnt
statements or a list of equations, where in both cases the lhs’s function as
right hand side recognizers, does not confuse this idea. This rather informal
indication merely serves as a suggestion how R and its inverse operation are
designed.

So we suggest that we can consider any set of rhs’s as being built with linear
forms and power products only. An additional remark is worth being made:
Non-scalar kernels will in general have non-commutable arguments. These
arguments can in turn be arbitrary REDUCE-expressions, which also have
to be incorporated in the database. Hence the function table is created
recursively.

What is a cse and how do we locate its occurrences? A (sub)expression
is common when it occurs repeatedly in the input. The occurrences are,
as part of the input, distributed over the matrices, and shown as equiv-
alent (sub)patterns. In fact, we repeatedly search for completely dense
(sub)matrices of rank 1. The expression 2a + 3¢ is a cse of e; = 2a+4b+ 3¢
and eg = 4a + 6¢ + bd, representable by (2,4,3,0) and (4,0,6,5), respectively.
We indeed have to assume commutativity, so as to be able to produce new
patterns (2,0,3,0,0), (0,4,0,0,1) and (0,0,0,5,2), representing s = 2a + 3c,
e1 = 4b+ s and ey = 5d + 2s, respectivily, and thus saving one addition and
one multiplication. Such an additive cse can be a factor in a (sub)product,
which in turn can extend its monomial part, when replacing the cse by a
new symbol. Therefore an essential part of an optimization step is regroup-
ing of information. This migration of information between the matrices is
performed if the Breuer-searches are temporarily completed. After this re-
grouping the distributive law is applied, possibly also leading to a further
regrouping. If at least one of these actions leads to a rearrangement of infor-
mation the function Tj is again applied. In view of the iterative character
of the optimization process we always accept minimal profits.

A similar search is performed to detect multiplicative cse’s, for instance
occuring in e; = a?b*¢® and es = a*cd°. However, given a power product
[T, 2;%, any product]/, 2;%, such that some b; < a;, for i = 1(1)m, can

2 PRELIMINARIES 7

function as a cse. We therefore extend the search for multiplicative cse’s by
employing this property, and as indicated in [?].

The finishing touch F is made to perform one-row and/or one-column searches.
Once the extended Breuer-searches do not lead to further reduction in the
arithmetic complexity we try -applying it- to improve what is left. The coef-
ficients in (sub)sums can have, possibly locally, a ged, which can be factored
out. One-column operations serve to discover and to replace properly con-
stant multiples of identifiers. As part of the output-process we subject all
exponentiations left - at most one for each identifier - to an addition chain
algorithm.

2.4 The Interplay between GENTRAN and SCOPE 1.5

The current version of SCOPE is written in RLISP. Like GENTRAN, it can
be used as an extension of REDUCE. When SCOPE is loaded GENTRAN
is also activated.

If we start a REDUCE session, we create an initial algebraic mode pro-
gramming environment. All switches get their initial value, such as ON
EXP,PERIOD and OFF FORT. Certain REDUCE commands serve to modify or
to enrich the current environment. Others are used to perform calculations,
producing formulae. Such a calculation follows a standard pattern, although
parts of this repertoire can be influenced by the user, for instance by chang-
ing the value of certain switches. Usually execution is a three-step process.
First the infix text is parsed into a prefix form. Then the internal algebra is
applied on this form, leading to a so-called standard quotient. This quotient
is stored on the property list of the identifier functioning as assigned variable
for this value. The last step defines the inverse route from internal existence
to external presentation in infix form. Occurrences of identifiers are recur-
sively replaced by their standard quotient representation when the internal
algebra is applied. Hence the REDUCE simplification strategy follows the
imperative programming paradigm.

When loading SCOPE, and thus GENTRAN, the environment is enriched
with features for program generation and program optimization. Evaluation
of GENTRAN and SCOPE commands differs from the standard REDUCE
approach to evaluation. Both packages employ their own storage mecha-
nism. The output is normally produced as a side-effect of the command
evaluation. The output is directed to some medium, a file or a screen. Com-

2 PRELIMINARIES 8

mand evaluation is similar in GENTRAN and in SCOPE.

The code generation process of GENTRAN can be viewed as the application
of a composite function to an argument, which is almost equivalent with a
piece of REDUCE code. Almost, because some GENTRAN specific facilities
can be used. We can distinguish between the preprocessing phase, the trans-
lation phase and the postprocessing phase. During preprocessing relevant
parts of the input are evaluated prior to translation into prefix form. Such a
locally performed evaluation can be accomplished through recognition of cer-
tain ”evaluation markers”, i.e. modifications of the traditional assignment
symbol :=, such as ::=, :=: and ::=:. The := operator ”"orders” GEN-
TRAN to translate the statement literally. Addition of an extra colon to
the left hand side orders subscript expression evaluation before translation.
An extra colon to the right hand side leads to right hand side evaluation,
but without application of the storage mechanism of REDUCE. Hence eval-
uations remain anonymous and are only incorporated in the translatable
"text”. Another aspect of preprocessing is initialization of the symbol ta-
ble, using information provided by a DECLARE statement. GENTRAN also
allows to further rewrite (sets of) arithmetic assignment statements, using
the switches GENTRANOPT and GENTRANSEG, introduced for code optimization
(using SCOPE) and segmentation, respectively. It possibly leads to storage
of additional information in the symbol table. During the translation phase
the final internal form of the code is produced, in combination with format-
ting specifications and instructions to produce declarations. Postprocessing
finally does produce formatted code strings. So essentially, each GENTRAN
command has its own seperate translation process, implying that the symbol
table, required for the production of declarations, is fresh at the beginning
of a GENTRAN command evaluation.

As stated before, a SCOPE command evaluation is also a composite op-
eration. The role of the assignment operators in both GENTRAN and
SCOPE is similar. In SCOPE, the locally performed evaluation provides
information to be entered in the database Dg. If the declaration feature is
activated, the symbol table generation and maintenance mechanism is bor-
rowed from GENTRAN. For output production, we can make a choice from
GENTRAN’s target language repertoire. When declarations are required,
we simply obey the GENTRAN regime as well. D, is used to update the
symbol table. All cse-names, generated during the optimization process,
are typed in accordance with the strategy for dynamic typing, which is dis-
cussed in [?], chapter 6. We assume all relevant identifiers of Ej, to be

2 PRELIMINARIES 9

adequately typed, using SCOPE’s DECLARE facility, an equivalent of GEN-
TRAN’s DECLARE statement. The production of D) is completely decoupled
from the normal REDUCE simplification strategy, because we employ our
own expression database.

In principle, the status of REDUCE before and after a GENTRAN or
SCOPE command execution is unaltered. In principle, because some mi-
nor modifications, although user controlable, may be necessary. The special
assignment symbols -also usable in SCOPE- were only introduced as a syn-
tactical instrument to allow internal algebraic actions, decoupled from the
standard REDUCE expression processing.

This short excursion into the different evaluation strategies is added to assist
in understanding the functioning of the different SCOPE commands and
facilities, to be introduced in the next sections.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE10

3 The Basic SCOPE 1.5 Facilities in the Algebraic
Mode

REDUCE allows, roughly speaking, two modes of operation in algebraic
mode: ON EXP or OFF EXP. The first is the default setting, leading to ex-
panded forms. The latter gives unexpanded forms, as discussed by Hearn in
some detail [?, ?]. It is obvious that the OFF EXP setting is in general prefer-
able over the ON EXP setting when attempting to optimize the description
of a set of assignment statements.

The result of an application of SCOPE can be influenced by the use of
certain REDUCE- or SCOPE-switches. The influence of EXP is obvious:
unexpanded input is more compact than expanded. ON ACINFO serves to
produce tables with the numbers of arithmetic operations, occuring in Eg
and E,, respectively. ON INPUTC serves to echo the input, processed by
SCOPE. The actual form of the input can be the consequence of locally
performed evaluations, before the actual parsing into the database takes
place. ON PRIMAT can be used to visualize both Dy and D). ON PRIALL
finally, can be used instead of ON ACINFO,INPUTC,PRIMAT. These SCOPE-
switches are initially all turned OFF. SCOPE has a facility to visualize the
status of all SCOPE-switches and some relevant REDUCE-switches. The
current status of all relevant switches can be presented with the command

SCOPE_SWITCHES$
Example 1

The start of a REDUCE session shows the initial state of REDUCE, directly
after loading the SCOPE package. The set of relevant switches is made
visible. Besides the REDUCE switches EVALLHSEQP, EXP, FORT, NAT, PERIOD,
ROUNDBF and ROUNDED six additional SCOPE switches, i.e. AGAIN, FTCH,
INTERN, PREFIX, SIDREL and VECTORC, and the GENTRAN switches DOUBLE
and GENTRANOPT are thus presented. They all wil be discussed in more detail
below.

REDUCE 3.6, 15-Jul-95 ...
1: load_package nscope$
2: SCOPE_SWITCHES$

ON : exp ftch mnat period

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE11

OFF : acinfo again double evallhseqp fort gentranopt inputc
intern prefix priall primat roundbf rounded sidrel
vectorc

3: % etc.

O
Output is by default given in REDUCE syntax, but FORTRAN syntax is
possible in the usual way, e.g. ON FORT and OFF PERIOD, for instance. The

use of other target languages from the GENTRAN repertoire is discussed in
section 6.

3.1 The OPTIMIZE command: Straightforward use

A SCOPE application is easily performed and based on the use of the fol-
lowing syntax:

<SCOPE_application> ::= 0OPTIMIZE <object_seq> [INAME <cse_prefix>]
<object_seq> = <object>[,<object_seq>]

<object> n= <stat> | <alglist> | <alglist_production>
<stat> = <name> <assignment operator> <expression>
<assignment operator> = = | u= | u=: | =

<alglist> = {<eq-seq>}

<eq.seq> = <name> = <expression>[,<eq-seq>]
<alglist_production> = <name> | <function_application>
<name> n= <id> | <id> (<a_subscript_seq>)
<a_subscript_seq> = <a_subscript>[,<a_subscript_seq>|
<a_subscript> = <integer> | <integer infix_expression>
<cse_prefix> n= <id>

A SCOPE action can be applied on one assignment statement. The assigned
variable is either a scalar identifier, like z in example 2, or a name with sub-
scripts, such as a(1,1) in example 3. In stead of one statement a sequence
of such statements, separated by comma’s, is possible. An alternative is pro-
vided by the use of an algebraic mode list, consisting of REDUCE equations.
An assigned variable, identifying such a list, is allowed as well. Examples are
presented in section 3.2. The function_application is introduced in section 4.
Such an application ought to produce an alglist.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE12

The expressions, i.e. rhs’s in assignments or equations are legal REDUCE
expressions or ought to evaluate to such expressions. Statements inside
expressions are allowed, but only useful if these expressions are evaluated,
before being optimized. Only integer or rounded coefficients are supported
by SCOPE. So we either suppose the default integer setting or allow the
switch ROUNDED to be turned ON.

The optional use of the INAME extension in an OPTIMIZE command is in-
troduced to allow the user to influence the generation of cse-names. The
cse_prefix is an identifier, used to generate cse-names, by extending it with
an integer part. If the cse_prefix consists of letters only, the initially selected
integer part is 0. All following integer parts are obtained by incrementing
the previous integer part by 1. If the user-supplied cse_prefix ends with an
integer its value functions as initial integer part. The gensym-function is
applied when the INAME-extension is omitted. The three alternatives are
illustrated in example 2.

As stated before minimal profits are accepted during all stages of the op-
timization process: many small steps may lead to impressive final results.
But it can also lead to unwanted details. Therefore, it can be desirable to
rerun an optimization request with a restriction on the minimal size of the
rhs’s. The command

SETLENGTH <integer>$

can be used to produce rhs’s with a minimal arithmetic complexity, dictated
by the value of its integer argument. Statements, used to rename function
applications, are not affected by the SETLENGTH command. The default
setting is restored with the command

RESETLENGTH$

We now illustrate the use of the OPTIMIZE command through a number of
small examples, being parts of REDUCE sessions. We show in example 2
the effect of the different visualization switches, the use of SETLENGTH and
RESETLENGTH and of the three INAME alternatives. In example 3 the effect of
some of the GENTRAN and SCOPE input processing features is presented.
Some finishing touch activities are illustrated in the examples 4 and 5.
The approach towards rational exponents is presented in example 6, while
some form of quotient optimization is illustrated in example 7. Finally, we
present the differences in ON/OFF EXP processing in example 8.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE13

Example 2

The multivariate polynomial z is a sum of 6 terms. These terms, monomials,
are constant multiples of power products. A picture of Dy is shown after
the input echo. The sums-matrix consists of only one row, identifiable by its
Fa(the)r z, the lhs. Its exponent is given in the EC (Exponent or Coefficient)
field. The 6 monomials are stored in the products-matrix. The coefficients
are stored in the EC-fields and the predecessor row index, 0, is given in
the Far-field. Before the D) picture is given the effect of the optimization
process, the output and the operator counts are shown. The optimized form
of z is obtained by applying the distributive law. The output also shows
applications of an addition chain algorithm ([?] 441-466) as part of R™1,
although its use in example 4 is more apparent.

Observe that the output illustrates the heuristic character of the optimiza-
tion process: In this particular case the rhs can be written as a polynomial
in g4, thus saving one extra multiplication.

The SETLENGTH command is illustrated too. See also example 12. Applica-
tion of a Horner-rule may be profitable as well. See, for instance example 16.

ON PRIALL$
z:=a"2xb"2+10%a”"2*m"6+a” 2*m"~2+2*a*b*m”~4+2*b " 2*m”~6+b"2*m"2;

2 2 2 6 2 2 4 2 6 2 2
Z := a *b + 10%a *m + a *m + 2*a*xb*m + 2%b *m + b *m

OPTIMIZE z:=:z$

2 2 2 6 2 2 4 2 6 2 2
z :=ax*xb + 10%a *m + a *m + 2*%axbxm + 2%b *m + b *m

Sumscheme :

|| EC|Far

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE14

Productscheme :

| 0 1 2| EC|Far

1] 2 2| 1] 0
2l 6 2] 10] ©
31 2 2] 1] 0
4] 4 1 1|1 2] 0
5] 6 2 | 210
6l 2 2 | 1] 0

m

1 : D

a

Number of operations in the input is:

Number of (+/-) operations)
Number of unary - operations : 0
Number of * operations : 10
Number of integer ~ operations : 11
Number of / operations : 0

Number of function applications : O

gl := b*a

g5 = m*m

g2 := gbxbx*b
g3 := gb*axa
g4 := gbxgbh

2 = g2 + g3 + glx(2egh + g1) + ghr(26g2 + 10%g3)

Number of operations after optimization is:

Number of (+/-) operations)
Number of unary - operations : 0
Number of * operations : 12
Number of integer ~ operations 0
Number of / operations : 0
Number of function applications : O

Sumscheme :

| 0 3 4 5| EC|Far

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE15

0l 1 11 1] z
15] 2 101 1] 14
7 2 1 | 1] 16
0 : g4
3 :¢gl
4 : g2
5 : g3

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE16

Productscheme :

| 8 9 10 11 17 18 19 20| EC|Far

7] 1 1] 1] gt
8l 1 2 | 1] g2
9| 1 2] 1] g3

10] 2 | 1] g4
11| 2 | 1] g5
14| 1 | 11 0
16| 1 | 11 0

8 : gb

9 : gb

10 : g3

11 : g2

17 : gl

18 : m

19 ¢ b

20 : a

OFF PRIALL$
SETLENGTH 2%

OPTIMIZE z:=:z INAME s$

2 2
sl := b *m
2 2
S2 := a *m
4 4
z := (axb + 2¥m)*a*xb + 2%(s1 + 5*s2)*m + sl + s2
RESETLENGTH$

OPTIMIZE z:=:z INAME si1$

sl := bx*xa

sb := m*m

s2 := sbxbxb
s3 := sb*¥axa
s4 := sbx*sb

z := 82 + 83 + s1*x(2%s4 + s1) + s4%(2*s2 + 10%*s3)

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE17

Example 3

The input echo below shows the literal copy of the first assignment. This
is in accordance with role the GENTRAN assignment operator := ought to
play. The second assignment, this time using the operator : :=:, leads to rhs
evaluation (expansion) and lhs subscript-value substitution. Application of
the distributive law is refected by the rhs of a(1,1) in the presented result.

OPERATOR a$ k:=j:=1$ u:=c*x+d$ v:=sin(u)$
ON INPUTC$

OPTIMIZE a(k,j):=vk(v™2xcos(u) "2+u), a(k,j)::=:v*(v"2*cos(u) "2+u) INAME s;

2 2

a(k,j) := vx(v *cos(u) + w)
2 3

a(1,1) := cos(c*x + d) *sin(c*x + d) + sin(c*x + d)*c*x + sin(c*x + d)*d
s9 := cos(u)*v
a(k,j) := vk(u + s9%s9)
s6 := x*c + d
sb := sin(s6)

s10 := sbxcos(s6)
a(1,1) := s5%(s6 + s10%s10)

Example 4

The effect is shown of a finishing touch application, in combination with
FORTRAN output. The value of S0 is rewritten during output preparation,
and the earlier mentioned addition chain algorithm is applied. When turning
OFF the switch FTCH the latter activity is skipped.

ON FORT$ OFF PERIOD$
OPTIMIZE z:=(6*a+18*b+9%c+3*d+6*f+18%g+6*xh+5xj+5%k+3) 13 INAME s;

S0=5% (J+K) +3* (3*C+D+1+6% (B+G) +2* (A+F+H))
S$3=S0%S0%*S0

S$2=83%S3

Z=S0*S2*S2

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE18

OFF FTCH$
OPTIMIZE z:=(6%a+18*b+9%c+3*d+6*f+18*g+6xh+5xj+5%k+3) 13 INAME s;

Z=(5% (J+K) +3* (3*C+D+1+6* (B+G) +2* (A+F+H))) **13

Example 5

Recovery of repeatedly occurring integer multiples of identifiers, as part of
the finishing touch, is illustrated. This facility is part of the finishing touch
and will seemingly be neglected when using SETLENGTH 2$ instruction in
stead of OFF FTCH.

OPTIMIZE x:=3%a*p, y:=3*a*xq, z:=6%a*r+2x*bx*p,
u:=6*a*xd+2%bxq, v:=9%axc+4*b*d, w:=4*b INAME s;

s2 := 3%a

X = 82%p

y = 82%q

sO := 2xb

s3 := 6*a

z := s0%p + s3*r
u := sO0*q + s3*xd
w := 4%b

v = wkd + O*c*a

OFF FTCH$

OPTIMIZE x:=3%a*p, y:=3*axq, z:=6%a*r+2*bx*p,
u:=6*ax*xd+2*xb*xq, v:=9*axc+4dxbxd, w:=4xb INAME t;

3*p*a

3*xq*a

2%b*p + 6*r*a
2%bxq + 6*d*a
4*dxb + 9*cx*a
4%b

% < £ N< X
1]

ON FTCH$
SETLENGTH 2$

OPTIMIZE x:=3*a*p, y:=3*%a*xq, z:=6%a*xr+2xb*p,
u:=6%a*xd+2%bxq, v:=9*axc+4xbxd, w:=4*xb INAME t;

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE19

3*p*a

3xq*a

2%bxp + 6*r*a
2%bxq + 6*d*a
4%dxb + 9xc*a
4%b

% < £ N< X
1]

Example 6

This example serves to show how SCOPE deals with rational exponents. All
rational exponents of an identifier are collected. The least common multiple
lem of the denominators of these rationals is computed and the variable is
replaced by a possibly newly selected variable name, denoting the variable
raised to the power 1/lcm. This facility is only efficient for what we believe
to be problems occurring in computational practice. That is easily verified
by extending the sum we are elaborating here with some extra terms.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE20

ON INPUTC,FORT$
OPTIMIZE z:=:FOR j:=2:6 SUM q~(1/j) INAME s;

1/6 1/5 1/4 1/3
z :=q +q +q +q + sqrt(q)

S0=Q*x(1.0/60.0)
S8=S0*S0

S7=S8*S0

S5=88%*37

S53=85%*35

S52=88%*33

S1=S7*S2

S4=S5*s1
Z=54+51+32+533+54*S3

Example 7

The special attention, given to rational exponents, is not extended to ratio-
nal coefficients. The script in this example shows four different approaches
for dealing with such coefficients using the expressions assigned to £ and g.
We start with a literal parsing of the two assignments, leading to a form of
Dy, which is based on the present REDUCE strategy for dealing with fixed

float numbers in the default integer coefficient domain setting. The four

31 31 93 93 : : 1 - - s
=, 15> = and j5 are just like b5, /sin(---) and sin(---)3

considered as kernels.

rational numbers

The second approach illustrates the effect of simplification in an OFF ROUNDED
mode prior to parsing. The input expressions are remodeled into rational
expressions, the usual internal standard quotient form.

After turning ON the switch ROUNDED we repeat the previous commands.
Again some differences in evaluation can be observed. Literally taken in-
put, the third approach, shows rational exponent optimizations prior to the
production of rounded exponents in the output. The last approach, sim-
plification before parsing, leads to a float representation for the rational
exponents. SCOPE’s exponent optimization features are designed for inte-
ger and rational exponents only. Floating point exponentiation is therefore
assumed to be a function application.

Further illustrations of operations on quotients are shown in example 22.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE21

ON INPUTC$

OPTIMIZE
f:= cos(6.2%a+18.6%(b) " (1/5))/sqrt(sin(3.1*a+9.3%(b) " (1/5))),
g:= sin(6.2*%a+18.6%(b) " (1/5))/sin(3.1*a+9.3*(b) " (1/5)) " (5/3)
INAME s$

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE22

31 93 1/5
cos(————*a + ————xb)
5 5
f =
31 93 1/5
sqrt(sin(----*xa + -——-xb))
10 10
31 93 1/5
sin(----*xa + ----%Db)
5 5
g 1= —mmmmmmmmmm——
31 93 1/5 5/3
sin(----*a + ----%Db)
10 10
1/5
s1l5 := b
93 31
s12 := s1bk-—-- + a*x—-—--
5 5
93 31
s6 := sin(----*s15 + —----x*a)
10 10
1/6
s1l4 := s6
sb := sldxsl4x*sl4
cos(s12)
f = -
sb
sin(s12)
g 1= ——————————-
sb*xs14*s6
OPTIMIZE

f:=: cos(6.2*%a+18.6%(b) " (1/5))/sqrt(sin(3.1*a+9.3x(b)~(1/5))),
g:=: sin(6.2*a+18.6x(b) " (1/5))/sin(3.1*a+9.3*(b) "~ (1/5))"(5/3)
INAME t$

1/5
93*b + 31*a

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE23

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE24

1/5
93%*b + 31*a
sin(-————————----———-)
5
g 1= e
1/5 1/5
93%*b + 31*a 2/3 93*b + 31*a
sin(-—————-------———-) *sin(-———-——————————-)
10 10
1/5
t7 := 93%Db + 31*a
t7
t2 1= ———-—
5
t7
t5 := sin(----)
10
1/6
t1l := tb
t4d = tlixtllxtil
cos(t2)
f = -
t4
sin(t2)
g 1= ———————————
t4*xt11%th

ON ROUNDED$

OPTIMIZE
f:= cos(6.2xa+18.6%(b) " (1/5))/sqrt(sin(3.1*a+9.3x(b) " (1/5))),
g:= sin(6.2*a+18.6%(b) " (1/5))/sin(3.1*a+9.3*(b) " (1/5))~(5/3)
INAME s$

1/5
cos(6.2xa + 18.6%b)

1/5
sqrt(sin(3.1%a + 9.3*xb))

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE25
1/5
sin(6.2*a + 18.6%b)

1/5 5/3
sin(3.1*a + 9.3%*b)

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE26

0.2
sb := 9.3%b + 3.1x*a
s8 := 2xsb
s4 := sin(sb)
0.166666666667
s10 := s4
s3 := s10%*s10%*s10
cos(s8)
f = -
s3
sin(s8)
g 1= ———————————
s3*s10*s4
OPTIMIZE

f:=: cos(6.2*%a+18.6%(b) " (1/5))/sqrt(sin(3.1*a+9.3x(b)"(1/5))),
g:=: sin(6.2%a+18.6*(b) " (1/5))/sin(3.1*a+9.3*(b) "~ (1/5))~(5/3)
INAME t$

0.2
cos(18.6*b + 6.2%a)
f =
0.2 0.5
sin(9.3*b + 3.1%a)
0.2
sin(18.6x*b + 6.2%a)
g 1= —mmmmm
0.2 1.66666666667
sin(9.3*b + 3.1%a)
0.2
t6 := 9.3%b + 3.1%a
t9 = 2%t6
t5 := sin(t6)
cos (t9)
f = -
0.5
tb
sin(t9)

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE27

1.66666666667
t5

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE28

Example 8

The effect of ON EXP or OFF EXP on the result of a SCOPE-application is
illustrated by optimizing the representation of the determinant of a symmet-
ric (3,3) matrix m. Besides differences in computing time we also observe
that the arithmetic complexity of the optimized version of the expanded
representation of the determinant is about the same as the not optimized
form of the unexpanded representation.

MATRIX m(3,3)$

m(1,1) :=18%cos(q3) *cos(q2) *m30*p~2-sin(q3) "2*j30y+sin(q3) "2*j30z-
9%sin(q3) "2*m30*p~2+jloy+j30y+m10*p~2+18*m30*p~2$

m(2,1):=
m(1,2) :=9*cos(q3) *cos(q2) *m30*p~2-sin(q3) "2*j30y+sin(q3) "2*j30z-
9*sin(q3) "2*m30*p~2+j30y+9*m30*p~2%

m(3,1):=
m(1,3) :=-9*sin(q3) *sin(q2) *m30*p~2$

m(2,2) :=-sin(q3) "2%j30y+sin(q3) "2%j30z-9*sin(q3) "2*m30*p~2+j30y+
9*m30*p~2$

m(3,2):=
m(2,3) :=0$

m(3,3) :=9*m30*p~2+j30x$
ON ACINFO,FORT$ OFF PERIOD$
OPTIMIZE detm:=:det(m) INAME s;

Number of operations in the input is:

Number of (+/-) operations : 36
Number of unary - operations : 0
Number of * operations : 148
Number of integer ~ operations : 84
Number of / operations : 0

Number of function applications : 32

S2=SIN(REAL(Q2))
S530=82%*32

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE29

S$3=SIN(REAL(Q3))

$29=33%S3

S31=P*P

$8=831%M30

$32=38%38

S4=832%J30Y

$28=332%S8

§9=829%M10

S10=830%S29*S29

S44=C0S (REAL(Q3))*COS (REAL(Q2))
S11=844%S44

$20=S31%S8

$23=831%J30X

§22=829%J30X

§24=88%J10Y

$19=M10*J30Y

$43=81%S32*J30X
S$35=-543-(81*S32%J10Y)
S36=-(729%529%S28) - (81%S29*S4)
§37=J30Z-J30Y

§39=9%3837

S40=9%J30X

S41=81%832%J30Z

S42=81%S4
DETM=S42+S36-335+729%S28+S37* (S22+J10Y+9%S29%S24+323%S9) +S10% (S42-

. S41)+S20%S8%81* (M10-5S9) +520%59* (S39-5S40) +S22+S8* (539- (9%J10Y)) +
. 520 (9%S19+S40*M10) +S24* (S40+9%J30Y) +J30Y*J30X* (J10Y+9*S8) +528
. 729%(S10-S11)+S29%(S41+S35)+S36+S30+523*519-(543*511)

Number

Number
Number
Number
Number
Number
Number

OFF EX

OPTIMI

Number

of operations after optimization is:
of (+/-) operations : 30

of unary - operations : 0

of * operations : 59

of integer ~ operations 0

of / operations : 0

of function applications : 4
P$

ZE detm:=:det(m) INAME t;

of operations in the input is:

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE30

Number of (+/-) operations : 23
Number of unary - operations 01
Number of * operations : 38
Number of integer ~ operations : 21
Number of / operations : 0

Number of function applications : 10

T1=SIN(REAL(Q3))

T9=T1%T1

T8=P*P

T5=T8*M30

T16=9%T5

T10=-T16- (9*T5*COS (REAL (Q3))*COS (REAL(Q2)))
T13=(T16+J30Y-J30Z) *T9

T15=T13-J30Y

TO=T15+T10

T14=T13-T16-J30Y

T17=T5*SIN(REAL(Q2))
DETM=81*T17*T17*T14*T9-((T16+J30X) * (TO*TO- (T14* (T15+2xT10-J10Y- (T8
. *M10)))))

Number of operations after optimization is:

Number of (+/-) operations : 13
Number of unary - operations : 0
Number of * operations : 18
Number of integer ~ operations 0
Number of / operations : 0
Number of function applications : 4

We can also use this example to show that correctness of results is easily
verified. When storing the result of a SCOPE application in a file, it is of
course possible to read the result in again. Then we apply a normal RE-
DUCE evaluation strategy. This implies that all references to cse-names
are automatically replaced by their values. We show the “correctness” of
SCOPE by storing the optimized version of the expanded form of the deter-
minant of M, called detm1 in file out . 1 and the result of a SCOPE-application
on the unexpanded form, detm2, in file out.2, followed by reading in both
files and by subtracting detm2 from detml, resulting in the value 0. This
is of course an ad hoc correctness-proof for one specific example. It is in
fact another way of testing the code of the package. We show it as a direct
continuation of the previous determinant calculations.

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE31

This example also serves to show that the OPTIMIZE command can be ex-
tended with the OUT option. The keyword OUT has to be followed by a
file-name. This file is properly closed and left in a readable form, assum-
ing printing is produced in a OFF NAT fashion. SCOPE’s file management
features are discussed in more detail in section 5.

OFF ACINFO,FORT,NAT$ ON EXP$

OPTIMIZE detml:

:det (M) OUT "out.1" INAME s;
OFF EXP$

OPTIMIZE detm2:

:det (M) OUT "out.2" INAME t;

ON NAT$
IN "out.1","out.2"$

detml-detm?2;

0
O

So far we presented via some examples straightforward algebraic mode use.
The output is produced as a side-effect. However, optimization results can
easily be made operational in algebraic mode. The parameterless function

ARESULTS

delivers the result of the directly preceding OPTIMIZE command in the form
of a list of equations, corresponding with the sequence of assignment state-
ments, shown either in REDUCE syntax or in the syntax of one of GEN-
TRAN’s target languages. But, we need to operate carefully. Application of
a variety of assignment operators can easily bring in identifiers, representing
earlier produced algebraic values. They will be substituted automatically,
when referenced in rhs’s in the list, produced with an ARESULTS application.
Therefore, we implemented a protection mechanism. Before delivering out-
put produced by ARESULTS, we make the system temporarily deaf for such
references. The possibly game-spoiling algebraic values are stored at a seem-
ingly anonymous place. All identifiers, subjected to this special treatement,
can be made visible with the command

RESTORABLES;

Their original status can be restored, either globally with the command

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE32

RESTOREALL$
or selectively with the instruction
ARESTORE <subsequence>$

This subsequence is built with names, selected from the list of RESTORABLES,
and separated by comma’s. Information restoration is only possible before
the next OPTIMIZE command.

Example 9

The use of these commands is now illustrated. A further explanation is
given in the form of comment in the script.

u:=a*xx+2%b$ v:=sin(u)$ w:=cos(u)$ f:=v"2x*w;

2
f := cos(a*x + 2xb)*sin(a*x + 2xb)

OFF EXP$

OPTIMIZE f:=:f,g:=:£"2+f INAME s;

s3 := x*a + 2%b

s2 := sin(s3)

f := s2%s2*cos(s3)
= fx(f + 1)

alst:=ARESULTS;
alst := {s3=axx + 2x%D,
s2=sin(s3),

2
f=cos(s3)*s2 ,

g=(f + 1)*f}

% —_—

% SCOPE is made deaf for the standard reference mechanism for algebraic
% variables. However the rhs’s in the list alst are simplified before

% being shown. It explains the differences between the layout in the

% alst items and the results, presented by the OPTIMIZE-command itself.
/A—

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE33

RESTORABLES;
{£}

f;

ARESTORE £$
£;
2
cos(a*x + 2*b)*sin(a*x + 2%b)
% —_
% f is re-associated with its original value. This can lead to a modified
% presentation of some of the rhs’s of alst.
A—
alst;
{s3=axx + 2x%b,

s2=sin(s3),

2
f=cos(s3)*s2 ,

2 2
g=(cos(axx + 2xb)*sin(a*x + 2%b) + 1)*cos(a*x + 2*b)*sin(a*x + 2xb) }

OPTIMIZE f:=:f,g:=:£72+f INAME s;
s3 := x*a + 2%*b

s2 := sin(s3)

f := s2*s2%cos(s3)

g = £x(f + 1)

alst2:=ARESULTS$

OPTIMIZE f:=:f,g:=:£72+f INAME s;

g = fx(f + 1)

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE34

—
% The algebraic value, which was associated with f, is permanently

% lost. It ought to be restored before a new OPTIMIZE command is given.

% Therefore f:=:f produced an identity, which is redundant in terms of

% code production. More details about removal of redundant code are

% given in section 7, when discussing data dependencies and related topics.

% —_—

RESTOREALLS$

3.2 The function ALGOPT: Straightforward use

The function ALGOPT accepts up to three arguments. It can be used in stead
of the OPTIMIZE command. It returns the optimization result, like ARESULTS,
in the form of a list of equations. Since the ARESULTS mechanism is applied as
well, the pre-ALGOPT-application situation can be restored with RESTOREALL
or partly and selective with ARESTORE, using information, providable by an
application of the function RESTORABLES.

The first argument of ALGOPT, like the other two optional, is the equiva-
lent of the alglist or alglist_production in the earlier introduced syntax of a
SCOPE_application. The second argument can be used to inform SCOPE
that input from file(s) have to be processed. We survey SCOPE’s file man-
agement features in section 5. So we omit a further discussion now. The
last argument correspondents with the cse_prefix of the INAME option of
the OPTIMIZE command. The extension of the SCOPE_application syntax,
needed to include possible ALGOPT activities, is:

<SCOPE_application> == .- |
ALGOPT(<a-object_list>[,<string-id_list>][,<cse_prefix>]) |
ALGOPT([<a_object_list>,| <string_id_list >[,<cse_prefix>])

<a_object list> 1= <a_object> | {<a_object>[,<a_object_seq>|}

<a_object_seq> = <a_object>[,<a_object_seq>]

<a_object> n= <id> | <alglist> | <alglist_production> | {<a_object>}

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE35

We require at least one actual parameter, here the a_object_list. Its syntac-
tical structure allows to apply a GENTRAN-like repertoire in an algebraic
mode setting. The a_object’s can either be an alglist identifier, an alglist
producing function application, or an alglist itself. An alglist identifier can
be either a scalar or a matrix or array entry. The alglist producing functions
will be discussed in section 4. An alglist has the structure of an algebraic
mode list; its elements are either a_object’s or equations of the form lhs =
rhs. Such equations correspondent with the "take literal” GENTRAN op-
erator := facility in the setting of an OPTIMIZE command (see also section 4
for a further discussion). The alternatives, i.e. uses of : 1=: or 1:=:,
are also covered by the a_object syntax. The examples, glven in this subsec-
tion, show that simplification of an algebraic list of equations leads to right
hand side simplification, corresponding with the effect of the colon-added-
to-the-right-extension of the assignment operator. However, as illustrated
by example 13, some care has to be taken when operating in OFF EXP mode.
Turning ON the switch EVALLHSEXP, can lead to lhs evaluations, correspond-
ing with the extra-colon-to-the-left strategy. But we have to be aware of
the instanteneous evaluation mechanism for matrix and array entries, when
referenced.

We present some examples of possible use of the ALGOPT function. In ex-
ample 10 a straightforward application is given. In example 11 follows an
ilustration of a possible strategy concerning optimizing sets of array- and/or
matrix-entries. Then, in example 12, possible SCOPE assistance in problem
analysis is shown. Finally in example 13 some differences in simplification
and their influence on optimization are discussed. We also introduce and
explain the role of the SCOPE switch SIDREL.

Example 10

A number of possible alglist elements is presented in the script. The first
three elements of the actual parameter define values, obtained via the usual
algebraic mode list evaluation mechanism. The last two will be processed lit-
erally. So, the actual parameter for ALGOPT is composed of the scalar alist,
a list consisting of the matrix element m(1,1), the array element ar(2,2),
nested even deeper, and two equations. Before an ALGOPT argument is op-
timized it is flattened by the SCOPE parser into a list of equations, the
algebraic mode equivalent of the sequence of assignments in the OPTIMIZE
context. Evaluation of an ALGOPT application leads to an algebraic mode
list of equations, with optimized rhs’s. The cse_prefix was seemingly su-

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE36

perfluous, because all its references disappeared by back-substitution before
output-processing started. See also example 13.

Since an ALGOPT application always results in an algebraic mode list, one
can not use this feature for production of code in one of GENTRAN’s target
languages. To facilitate the translation of the result of an ALGOPT applica-
tion, we extended the syntax of the OPTIMIZE input repertoire, such that
alglst_production’s are processable by OPTIMIZE as well, as illustrated in the
script of this example and in example 13

OFF EXP$
ARRAY ar(2,2)$ MATRIX m(2,2)$

alst:={pl=a+b,p2=(a+b) "2}$
m(1,1) :={ql=c+d,q2=(c+d) “2}$
ar(2,2) :={r1=(a+b)*(c+d) ,r2=(a+b) "2%(c+d) "2}$

optlst:=ALGOPT ({alst,{m(1,1)},{{ar(2,2)}},
ti=(atb)*(c+d) "2,t2=(c+d) * (a+b) "2},s);

optlst := {pl=a + b,
2
p2=pl ,
ql=c + d,
2
q2=ql ,
ri=plxql,
2
r2=ril ,
tl=ql*ril,
t2=plxri}

OPTIMIZE optlst$

pl :(=a+b
p2 := pl#*pl
ql :=c +d
q2 := qlx*q1l
rl := qlx*pil
r2 := rilxrl
tl := rixql

t2 = rix*pl

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE37

Example 11

In example 8 we introduced a symmetric (3,3)-matrix m. We present an
alternative computation of its determinant. We start with building a list
of equations, with rhs’s, being the non-zero entries of m, relevant for the
computation. The lhs’s are produced with the mkid function. These newly
generated names are assigned to the matrix-entries as well. Finally we add
the definition of the computation of the determinant of m, in terms of the
redefined entries, to this list. For the construction of the value of mlst we
applied both the lhs and rhs evaluation mechanism. Observe also that, due
to the redefinition process, the original values of the entries of the matrix m
are lost. We can optimize mlst, using either an OPTIMIZE command or an
ALGOPT application. The reduction in arithmetic is not yet impressive here,
certainly comparing it with the non-expanded, optimized form in the earlier
example 8. (See also example 13 for additional comment). However, working
with larger and non-symmetric matrices will certainly improve results, when
applying a comparable strategy.

Observe that the syntax of permissible ALGOPT a_object’s does not allow to
use matrix or array names to compactly identify the complete set of their
entries. The script in this example shows that such a facility is easily made.
This possibility exists already for matrices in a GENTRAN setting (see also
example 22 in section 8).

% _

% We assume the matrix m to be known already.

A—
mlst:={}$ 1:=-1%
OFF EXP$ ON EVALLHSEQP$

FOR j:=1:3 DO FOR k:=j:3 DO
IF m(j,k) neq O THEN
<< s:=mkid(t,l:=1+1);
mlst:=append(mlst,{s=m(j,k)});
m(j,k) :=m(k,j):=s
>>$

OFF EVALLHSEQP$

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE38

m;

[t0 t1 t2]
[]
[t1 t3 01
[]
[t2 0 t4]

mlst:=append(mlst,{detm=det (m)});

2 2
mlst := {t0= - (j30y - j30z + 9*m30*p)*sin(q3)

2 2
+ 18xcos(q2)*cos(q3)*m30*p + j10y + j30y + mlOx*p

2
+ 18*m30%*p ,

2 2
tl= - (j30y - j30z + 9#m30*p)*sin(qg3)

2 2
+ 9%cos(q2)*cos(g3) *m30*xp + j30y + 9*m30%*p ,

2
t2= - 9*sin(q2)*sin(q3)*m30*p ,

2 2 2
t3= - (j30y - j30z + 9*m30*p)*sin(q3) + j30y + 9*m30*p ,

2
t4=3j30x + 9*m30*p ,

2 2
detm=(t0*t3 - t1)*t4 - t2 *t3}

ON ACINFO,FORT$ OFF PERIOD$
OPTIMIZE mlst INAME s;

Number of operations in the input is:

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE39

Number
Number
Number
Number
Number
Number

of (+/-) operations : 19
of unary - operations 01
of * operations : 33
of integer ~ operations : 16
of / operations : 0
of function applications : 9
SO0=SIN(REAL(Q3))

S7=P*P

S5=S7*M30
S4=55*C0S (REAL (Q3)) *COS(REAL(Q2))
S513=9%85

S$11=(813+J30Y-J30Z) *S0*S0
TO=J30Y+J10Y+18% (S4+35) +S7*M10-S11
T3=S13+J30Y-S11

T1=T3+9%S4
T2=-(S13*SIN(REAL(Q2))*S0)
T4=S13+J30X

DETM=T4%* (T3*TO- (T1*T1)) - (T2*T2%T3)

Number of operations after optimization is:
Number of (+/-) operations : 13
Number of unary - operations 01
Number of * operations : 17
Number of integer ~ operations 0
Number of / operations : 0
Number of function applications : 4
O
Example 12

We now illustrate that information, produced by SCOPE, can possibly also

play a

role in computations in algebraic mode. Let A.X = b be given by
(-1 2 -2 1 3 2] [a1] [5]
-2 4 -4 2 -2 3 x2 1
11 11 2 4 x3 _ 10
2 -2 -1 1 -1 =2 x4 N -3
3 1 -4 1 1 2 xd 4
I-1 -5 1 1 3 6| | 26 | .l 5]

This artificial system is constructed for illustrative purposes. Its solution is

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA40

simply x; = 1,1 = 1,..,6. But straightforward inspection shows that

2 4

A A, (-1 2 21 S
A—lA3 A4]whereA1—[_24_42]andA4— 1 9
3 6

We can use ALGOPT to ”discover” and thus to employ this information. The
system is introduced in the form of assignment statements e; = (Z?:l aij-x;) —b;, i = 1,---,6.
We use alst, identifying the set of equations (see command 9), as actual
parameter for ALGOPT, leading to an algebraic list, identified by reslst (see
command 10). We recognize g2 = g6 + x5 (= x5 + 2x6) and g1 = g3 +
gh + -2x3 (= -x1 + 2x2 - 2x3 + x4). Through command 12 we require
cse’s to have an arithmetic complexity of a least 4. We then find g1 di-
rectly, now called g8, because we continue applying the function gensym; the
cse_prefix was left out as actual parameter. The solve function is applied
(command 14) to obtain rootset1, a list of values for x5 and x6, expressed
in the parameter g8. After assigning g8 its value in algebraic mode and
resetting the algebraic values of ei, ¢ = 1,---,6 with RESTOREALL instruc-
tions (the commands 11 and 16), we can obtain the solution of the subsets,
denoted by rootsetl and rootset?2.

1: LOAD_PACKAGE nscope$

2: el:=2*x6+3*x5+x4-2*x3+2*x2-x1-5%

3: e2:=3*x6-2%x5+2*x4-4*x3+4*x2-2xx1-1$

4: e3:=2xx5+4*x6+x1+x2+x3+x4-10$

5: ed:=-x5-2*x6+2xx1-2%x2-x3+x4+3$

6: eb:=xb+2*x6+3*x1+x2-4*x3+x4-4$

7: e6:=3*x5+6*x6-x1-5*%x2+x3+x4-5%

8: solve({el,e2,e3,e4,e5,e6},{x1,x2,x3,x4,x5,x63});
{{x1=1,x2=1,x3=1,x4=1,x5=1,x6=1}}

9: alst:={el=el,e2=e2,e3=e3,ed=c4,e5=e5,ec6=e6}$

10: reslst:=ALGOPT alst;

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA1

reslst := {g3= - x1 + x4,
gb=2%x2,
gl=g3 + gb - 2*x3,
g6=2*x6,
el=gl + g6 + 3*xb - 5,
e2=2*gl - 2¥xb + 3*x6 - 1,
g2=g6 + x5,
gl4=x2 + x4,
e3=2*g2 + g4 + x1 + x3 - 10,
e4= - g2 - gb + 2xx1 - x3 + x4 + 3,
eb=g2 + g4 + 3*x1 - 4%x3 - 4,
e6=3*g2 + g3 - b*x2 + x3 - 5}
11: RESTOREALL$
12: SETLENGTH 4$
13: reslst:=ALGOPT alst;
reslst := {g8= - x1 + 2*x2 - 2*x3 + x4,
el=g8 + 3*x5 + 2%x6 - 5,
e2=2%g8 - 2%xb + 3*x6 - 1,
e3=x1 + x2 + x3 + x4 + 2*xxb5 + 4%x6 - 10,
ed=2xx1 - 2*x2 - x3 + x4 - x5 - 2*%x6 + 3,
eb=3*x1 + x2 - 4xx3 + x4 + x5 + 2xx6 - 4,

eb= - x1 - 5%x2 + x3 + x4 + 3*%x5 + 6%x6 - 5}

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA2

14: rootsetl:=solve({part(reslst,2,2),part(reslst,3,2)},{x5,x6});

g8 + 13 - 8%g8 + 13

rootsetl := {{xb=-—-----—--- ,XB=—— 1}
13 13

15: g8:=part(reslst,1,2);

g8 = - x1 + 2%x2 - 2*%x3 + x4

16: RESTOREALL$

17: rootset2:=solve(sub(rootsetl,{e3,e4,e5,e6}),{x1,x2,x3,x4});
rootset2 := {{x1=1,x2=1,x3=1,x4=1}}

18: rootsetl:=sub(rootset2,rootsetl);

rootsetl := {{x5=1,x6=1}}

Example 13

The script in example 11 suggests that we can easily copy GENTRAN'’s
assignment features by some listprocessing in algebraic mode. However, we
have to operate carefully. In the script of the present example we introduce
an expression denoted by f. Production of a number of its partial (higher)
derivatives is a straightforward mechanism to assist in constructing a set of
assignment statements, containing lots of cse’s. Inspection of the values, in
OFF EXP mode assigned to faa, tstl and tst2, respectively, learns that the
value of mlst in example 11 may be improvable.

u:=a*x+2*b$ v:=sin(u)$ w:=cos(u)$ f:=v"2*u$
OFF EXP$
faa:=df (f,a,2);

2 2 2
faa := (2*cos(a*xx + 2%b) - 7xsin(a*x + 2*b))*cos(axx + 2x*b)*x

tstl:={faa=df(f,a,2)};

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA43

tstl := {faa=2*xcos(a*x + 2xb) *x - 7*xcos(a*x + 2*b)xsin(a*x + 2xb) *x }
tst2:={faa=(faa:=df (f,a,2))};

2 2 2
tst2 := {faa=(2*cos(a*x + 2*b) - 7*xsin(a*x + 2%b))*cos(axx + 2*b)*x }

We produce an optimized version of the value of t1st, using ALGOPT. Switch-
ing ON INPUTC and PRIMAT results in an input echo, indeed showing ex-
panded rhs’s and a vizualized picture of the Sumscheme of D). We skipped
the Dg-picture and the rest of the Djy-picture from the script. The value
of reslst shows the patterns s14 = -7.f.x + 2.s9.x and fbb = -28.f +
8.89. The presented Sumscheme of D) suggests that £bb and s13 (see the
Fa(the)r entries) seemingly have nothing in common. But s14 stands for
2.86 - 7.s7, because, column 8 has to be identified with s7, etc. Since both
S6 and S7 occur only once in D), their value replaces them in the output.
It is an illustration of the heuristic character of the optimization process.
Optimization of the value of reslst shows that the repeated pattern is now
recognized.

tlst:={f=f,fa=df (f,a),fb=df (f,b) ,faa=df (f,a,2),
fab=df (f,a,b) ,fba=df (f,b,a),fbb=df (f,b,2)}$

ON INPUTC,PRIMAT$

reslst:=ALGOPT(tlst,s);

2
f := cos(axx + 2*b)*sin(a*x + 2x*b)
2 3
fa := 2xcos(a*x + 2%b) *sin(a*x + 2*b)*x - sin(a*xx + 2%b) *x
2 3
fb := 4xcos(a*x + 2%b) *sin(axx + 2%b) - 2xsin(a*x + 2xb)
3 2 2 2
faa := 2xcos(a*xx + 2%b) *x - T*xcos(a*x + 2xb)*sin(a*x + 2xb) *x
3 2
fab := 4xcos(axx + 2%b) *x - 14xcos(axx + 2xb)*sin(a*xx + 2%b) *x
3 2
fba := 4*cos(a*x + 2%b) *x — 14xcos(a*x + 2xb)*sin(a*x + 2%b) *x

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA44

3

2

fbb := 8*cos(axx + 2*¥b) - 28*cos(a*x + 2*xb)*sin(axx + 2xb)

Sumscheme :

| 3 4 5 6 7 8 9 10 11 12 32| EC|Far

1] s3
1] fbb
1] s14
1] si15

3|
20| -28 8
371 -7 2
38| -1
3 s3
4 s1b
5 sl4
6 s4
7 s9
8 s7
9 : s6
10 : s10
11 : sb
12 : s8
32 : b
reslst := {s3=a*x + 2x*b,
sO=cos(s3),
3
s9=s0 ,

s2=sin(s3),
s12=s0%s2,

f=s12%s2,

s15=2%s0%*s12 - s2
fa=s1b*x,

fb=2*s15,

3

>

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA5

sl14= - 7T*xf*xx + 2%s9*x,
faa=s14*x,
fab=2%*s14,
fba=fab,
fbb= - 28%f + 8%s9}
OFF INPUTC,PRIMAT$
OPTIMIZE reslst$
s3 := 2xb + x*a
s0 := cos(s3)
s9 := s0*xs0*s0

s2 := sin(s3)
s12 := s2%*s0

f := s12x%s2

s15 := 2%s12%s0 - s2%s2%s2
fa := s1b*x

fb := 2xs15

g3 := 2%s9 - Txf

s14 := g3*x

faa := sl4x*xx

fab := 2xs14

fba := fab

fbb := 4xg3

Repeating this process, this time with an OPTIMIZE command to begin with,
learns that the OFF EXP mode is now effective. But this time, and for simi-
lar reasons, the assignments fbb = 4.s59.s0 and s12 = s9.s0.x still have
a subexpression in common. Now the Productscheme of D) helps under-
standing the phenomenon; again we skipped for shortness the rest of the
information, provided by the ON PRIMAT status of SCOPE. Internally s12
denotes the product s4.s9, where s4 = x.s0. The cse s4 disappeared from
the output. An ALGOPT application leads to the ”discovery” of the cse g10
= s0.s9.

f:=v"2xw;
2
f := cos(a*x + 2xb)*sin(a*x + 2xb)

ON INPUTC,PRIMATS$

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA46

OPTIMIZE f:=:f,fa:=:df (f,a),fb:=:df(f,b),faa:
fab:=:df(f,a,b),fba:=:df (f,b,a) ,fbb:

:df (f,a,2),
:df (f,b,2) INAME s$

2
f := cos(a*x + 2xb)*sin(a*x + 2%b)
2 2
fa := (2*cos(a*x + 2%¥b) - sin(a*x + 2%b))*sin(a*x + 2*b)*x
2 2
fb := 2% (2*cos(a*xx + 2%b) - sin(a*x + 2%b))*sin(a*xx + 2xb)
2 2 2
faa := (2xcos(a*x + 2%b) - 7*xsin(a*x + 2xb))*cos(a*x + 2xb)x*x
2 2
fab := 2% (2%cos(a*x + 2%b) - 7xsin(a*xx + 2%b))*cos(axx + 2%b)x*x
2 2
fba := 2x(2xcos(a*x + 2%b) - 7xsin(a*x + 2xb))*cos(a*x + 2%b)x*x
2 2
fbb := 4% (2%cos(axx + 2%b) - 7xsin(a*xx + 2%b))*cos(axx + 2x*b)
s3 := x*a + 2*b

s0 := cos(s3)

s2 := sin(s3)

s6 := s2%s2

f := s6%*s0

s14 := 2*s0%*s0

s13 := (s14 - s6)%*s2

fa := s13%x

fb := 2%s13

s9 := sl1l4 - T*s6
s12 := s9%s0*x
faa := s12x%x

fab := 2%s12

fba := fab

fbb := 4xs9%s0
Productscheme :

| 0 2 3 4 512 14 18 19 20 21 22 23| EC|Far

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA7

o 1 1 | 11 f
5| 1 1 | 1| fa
9| 1 | 2| b
13| 1 1 | 1| faa
171 1 | 1| fab
211 1 | 1] fba
25| 1 1 | 4| fbb
29| 1 1 | 1] s4
30| 1 1] 1| sb
31| 2 | 1] s6
33| 2 | 1] s8
371 1 1 | 1] s12
38| 1 1 | 1] s13
39| 1 | 2| s14
40| 1 | 2| s15

0 s15

2 s13

3 s12

4 s9

5 s10

12 : s8

14 : s6

18 : sb

19 : s4

20 : s2=sin(s3)

21 : s0=cos(s3)

22 : X

23 : a

ALGOPT ARESULTS;

{s3=axx + 2x%b,
sO=cos(s3),

s2=sin(s3),

2
s6=s2 ,

f=s0%s6,

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA48

2
s14=2%s0 ,

s13=(s14 - s6)*s2,
fa=s13*x,
fb=2%s13,

s9=s14 - 7x*s6,
g10=s0%*s9,
s12=g10*x,
faa=s12x*x,
fab=2%s12,
fba=fab,

fbb=4%g10}

This script is shown for different reasons. It illustrates the heuristic char-
acter of the optimization process. We optimize, but do not guarantee the
optimal solution. It also shows how easily repeated SCOPE applications
can be accomplished. Hence commands like ”ALGOPT ARESULTS;”, ”ALGOPT
ALGOPT --- ;” or "0OPTIMIZE ALGOPT --- ;” are all possible. However, it is
sometimes better to avoid such a combination when a RESTOREALL instruc-
tion has to follow the first application. A more detailed discussion about
these possibilities is given in section 4, and especially in section 4.1. An
additional reason was, to stipulate that SCOPE’s actual parameters have to
be built carefully.

This example is also used to illustrate the role, which the switch SIDREL can
possibly play. When turned it ON the finishing touch F (see subsection 2.3)
is omitted and all non-additive cse’s are substituted back, thus producing
a possibly still rewritten input set, which consists of toplevel input and ad-
ditive cse’s only. A simple straightforward backsubstitution mechanism is
applied on the optimization result before it is presented to the user. Seem-
ingly, it can lead to surprises as shown below by the differences between the
presentations of s15, s14 and fbb when again optimizing the contents of

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODEA49

tlst. This effect disappeares when using SETLENGTH.

The switch SIDREL was introduced in SCOPE quite long ago. By that time
Hearn was wondering [?, 7] if (parts of) SCOPE output, presented in alge-
braic mode, can be used as input for a Grobner-base algorithm application,
thus attempting to assist in expression restructuring leading to improved
expression representations.

ON SIDREL$
ALGOPT (t1lst,s);
{s3=axx + 2x%b,

2
f=cos(s3)*sin(s3) ,

2 3
s15=2%cos(s3) *sin(s3) - sin(s3) ,

fa=s15*x,
fb=2x%s15,

2 3
s14= - 7xcos(a*x + 2*xb)*sin(a*x + 2*b) *x + 2*cos(s3) *x,

faa=s14x*x,
fab=2%*s14,
fba=2%*s14,

2 3
fbb= - 28*cos(a*x + 2¥b)*sin(axx + 2%¥b) + 8*cos(s3) }

SETLENGTH 4$
ALGOPT(tlst,s);

2
{f=cos(a*x + 2*b)*sin(a*x + 2xb) ,

2 3
s15=2*cos(a*x + 2*b) *sin(a*x + 2*b) - sin(a*x + 2%b) ,

3 THE BASIC SCOPE 1.5 FACILITIES IN THE ALGEBRAIC MODE50

fa=s1bx*x,
fb=2x%s15,

3 2
s14=2xcos(a*x + 2%b) *x — T7*xcos(a*x + 2xb)*sin(a*x + 2x%b) *x,

faa=s14*x,
fab=2%*s14,
fba=2%*s14,

3 2
fbb=8*cos(a*x + 2*b) - 28*cos(a*x + 2*b)*sin(a*x + 2*b) }

4 SPECIAL SCOPE 1.5 FEATURES 51

4 Special SCOPE 1.5 Features

Part of the input syntax for the function ALGOPT was left undiscussed in
section 3.2. It was the permissable form for (parts of) the actual param-
eter, defining function applications, producing an alglist. The alglist is an
algebraic mode list, consisting either of equations of the form lhs = rhs
or of constructs evaluating into an alglist or referencing an alglist. In sec-
tion 4.1 is explained which type of user defined functions lead to permissable
function applications as (part of an) actual parameter for an OPTIMIZE com-
mand or an ALGOPT application. Tools are provided for building a SCOPE
library. Already available facilities, designed along these lines, cover struc-
ture recognition, presented in section 4.2 and Horner-rule based expres-
sion rewriting, surveyed in section 4.3.

4.1 Towards a SCOPE 1.5 Library

Design and implementation of an algebraic or symbolic procedure, return-
ing a list of equations in algebraic mode, is straightforward as long as the
number of formal parameters is exactly known. Let us call such proce-
dures functions of NORMAL-type. When formal parameters are not required,
the so-called ENDSTAT-variant can be used. One simply associates an in-
dicator stat, with value endstat, with the function name f-name, using
lisp(put (’f-name,’stat, ’endstat))$ as instruction. Such a function
will be said to be of ENDSTAT-type.

The so-called PSOPFN-type function is similar to the FEXPR-type function in
symbolic mode. It may have an arbitrary number of unevaluated parame-
ters. Special attention is made possible by modifying the function revali,
used in both reval and aeval. The relevant section of the evaluator is:

symbolic procedure aeval u; revall(u,nil);
symbolic procedure reval u; revall(u,t);

symbolic procedure revall(u,v);

else if x:=get(car u,’psopfn)

then << u:=apply(x,list cdr u);
if x:=get(x,’cleanupfn) then u:=apply(x,list(u,v));
return u

4 SPECIAL SCOPE 1.5 FEATURES 52

The actual parameter u of revall is a function application in prefixform:
(function-name argl ... argn). The function-name is replaced by the
value of the indicator psopfn. The thus modified S-expression is evaluated.
This mechanism leaves control over evaluation of (part of) the arguments,
collected in cdr u, to the designer of the function hidden behind the psopfn
value. We employed this simple mechanism to implement ALGOPT and some
of the features, to be discussed in section 4.2 and section 4.3. A possible
re-evaluation step, based on the use of the value of the indicator cleanupfn
was not necessary; it is not yet allowed in the SCOPE context.

The different combinations, suggested in example 13, such as ALGOPT ALGOPT
or ALGOPT ARESULTS, are merely examples of a general rule:

ENDSTAT-, NORMAL- and PSOPFN-type functions, delivering an alglist when
applied, are all applicable as actual parameter or as element of an alglist,
functioning as actual parameter in an OPTIMIZE command or an ALGOPT
application.

So, in principle, special features, providing a form of preprocessing, can be
designed and implemented as extension of the default optimization reper-
toire. Of course additional function types are conceivable. We illustrate the
potential of this facility with a simple example. Further examples follow in
section 4.2 and section 4.3.

Example 14

The procedures asquares and repeated_squaring define the production of
lists of equations. The lhs’s function as name and the rhs’s as the com-
putational rules. Application of these functions shows how easy a user
can provide new features, usable in a SCOPE context. The procedures
asquares and repeated_squaring are essentially different The first has
one parameter, a list of equations, while the latter accepts an arbitrary
number of such lists as actual parameters. The psopfn indicator value is
repeated_squaringeval, the name of the function, which is actually intro-
duced. asquares is of NORMAL-type and applicable in both algebraic and
symbolic mode.

OPERATOR square$
sq_rule:={square(“u) => u~2}$

ALGEBRAIC PROCEDURE asquare u;
square (u) WHERE sq_rule$

4 SPECIAL SCOPE 1.5 FEATURES 53

SYMBOLIC PROCEDURE rsquare u;
reval asquare aeval u$

SYMBOLIC PROCEDURE asquares u;
append (list(’list),
FOREACH el IN cdr u COLLECT list(’equal,cadr el,rsquare caddr el))$

SYMBOLIC OPERATOR asquares$

SYMBOLIC PROCEDURE repeated_squaringeval u;
BEGIN SCALAR res; INTEGER j;
J=0;
FOREACH el IN u DO
<< j:=j+1; el:=asquares el;
FOR k:=2:j DO el:=asquares el;
res:= IF j=1 THEN el ELSE append(res,cdr el)
>>;

)

RETURN res
END$

LISP(put(’repeated_squaring,’psopfn,’repeated_squaringeval))$
/—

% Examples of the use of asquares and repeated_squaring.

% Although the psopfn-mechanism can be easily avoided,

% it is used for illustrative purposes here.

/A—

OFF EXP$

asquare sin(x);

2
sin(x)

LISP(rsquare(’(sin x)));
(expt (sin x) 2)
asq:=asquares {sl=a+b,s2=(a+b)"2,s3=(at+b)"3};

2 4 6
asq := {s1=(a + b) ,s2=(a + b) ,s3=(a + b) }

4 SPECIAL SCOPE 1.5 FEATURES 54
repeated_squaring ({si=a+b,s2=(a+b) "2},{s3=(a+b) "3,s4=(a+b) "4},
{s5=(a+b) "5,s6=(a+b) "6}) ;

2
{s1=(a + b) ,

4
s2=(a + b) ,

12
s3=(a + b) ,

16
s4=(a + b) ,

40
sb=(a + b) ,

48
s6=(a + b) }

% The "ALGOPT asquares ...;" application is similar to the "ALGOPT asq;"
% instruction.

D
ALGOPT (asquares {sl=a+b,s2=(a+b)"2,s3=(a+b)"3},t);

2 2
{t2=a + b,s1=t2 ,s2=s1 ,s3=s1*s2}

ALGOPT asq;

4 SPECIAL SCOPE 1.5 FEATURES 55

2 2
{g6=a + b,sl=gb6 ,s2=s1 ,s3=slx*s2}

% _—

% The OPTIMIZE variant is now applied on a repeated_squaring application.

% —_—

OPTIMIZE repeated_squaring({si=a+b,s2=(a+b)"2},{s3=(a+b)"3,s4=(a+b) "4},
{s5=(a+b) "5,s6=(a+b)"6}) INAME t;

tb :=a +b

sl := tbxth

s2 := slx*sl

t12 := s2%s2

s3 := s2%t12

s4 := s2%s3

sb = t12%t12%t12%*s4
s6 := t12x%sb

4.2 Structure Recognition: GSTRUCTR and ALGSTRUCTR

The structr command in REDUCE 3.6 (see the manual, section 8.3.8) can
be used to display the skeletal structure of its evaluated argument, a single
expression. After setting ON SAVESTRUCTR a structr command will return

a list, whose first element is a presentation for the expression and subsequent
elements are the subexpression relations.

A special SCOPE feature provides an extended display facility, called GSTRUCTR.
The syntax of this generalized command is:

<REDUCE command> == --- |
GSTRUCTR <stat_group> [NAME <cse_prefix>|

<stat_group> = € <statlist> >
<stat_list> = <gstat> [; <stat_list>]
<gstat> = <name> := < expression> | <matrix_id>

The stat_group consists of one assignment statement or a group of such
statements. Application of a GSTRUCTR command provides a display of the
structure of the whole set of assignments. Such an assignment can be re-
placed by a matrix reference. That leads to the display of all the non-zero
entries of the referenced matrix as well. The NAME part is optional. The

4 SPECIAL SCOPE 1.5 FEATURES 56

cse-name mechanism is applied in the usual way.

The equivalent of a possible ON SAVESTRUCTR setting is provided in the form
of a PSOPFN-type function, called ALGSTRUCTR. Its syntax is:

<function_application> ::= ALGSTRUCTR (<arg list> [, <cse_prefix>])
<arg_list> = <arglist.name> | {<arg-seq>}
<arg_seq> = <arg>|[,<arg-seq>|

<arg> = <matrix.id> | <name>=<expression>
<arg_list_name> n= <id>

The result is presented in the form of an algebraic mode list.

Earlier SCOPE-versions allowed to use a GSTRUCTR command as (part of an)
actual parameter for an OPTIMIZE command. This facility is not longer sup-
ported. In stead, an ALGSTRUCTR application can now be used as (part of an)
actual parameter in both an OPTIMIZE command or an ALGOPT application.
We now illustrate these features in:

Example 15

The script hardly requires explanation. However, observe that v1, v3, v4, v6
and v7 occur only once in the result of the GSTRUCTR application. When this
application is used as actual parameter for an OPTIMIZE command these re-
dundancies are removed before the actual optimization process starts. Like-
wise, an ALGSTRUCTR application only leads to identification of repeatedly
occuring sub-structures in its input. ALGSTRUCTR, ALGHORNER, see the next
subsection, and ALGOPT all apply the same output production strategy, i.e. it
might be necessary to restore the previous algebraic mode status by applying
the function RESTOREALL.

OFF EXP,PERIOD$
MATRIX a(2,2);

a:=mat ((x+y+z,x*y) , ((x+y)*x*y, (x+2%y+3) "3-x)) ;

[x+y + 2z X*y]
L]
a = [3]
[(x + yI*x*xy (x + 2%y + 3) - x]

GSTRUCTR <<a;b:=(x+y) "2;c:=(x+y) *(y+2z) ;d:=(x+2%y) * (y+z) * (z+x) "2>> NAME v§

4 SPECIAL SCOPE 1.5 FEATURES

a(1,1) :=v1
a(1,2) := xx*y
a(2,1) := v2*xxy

a(2,2) :=v4
2
b := v2
c := v2xvb
2

d := v6*v7 *vb

where
V7 =X + z
ve = x + 2%y
vb =y + z
3
vd = v3 - X
v3 =X + 2%y + 3
v2 1= x +y
vli :=x+y + z

ALGSTRUCTR ({a,b=(x+y) "2, c=(x+y) * (y+z) ,d=(x+2*y) * (y+2z) * (z+x) "2},v) ;
{a(1,D=x + y + z,

a(1,2)=xx*y,

v2=x +y,

a(2,1)=v2*xx*y,

3
a(2,2)=(x + 2xy + 3) - x,

2
b=v2 ,

vb=y + z,
c=v2*vb,

2
d=(x + 2*y)*(x + z) *xvb5}

4 SPECIAL SCOPE 1.5 FEATURES 58

RESTORABLES;
{a}
ARESTORE a$

alst:=
ALGOPT (ALGSTRUCTR ({a,b=(x+y) "2, c=(x+y) * (y+z) ,d=(x+2%y) * (y+2z) * (z+x) "2},v) ,s) ;

**x* a declared operator
alst := {sb=x + z,
a(1,1)=sb + vy,
a(1,2)=x*y,
v2=x + y,
a(2,1)=a(1,2)*v2,
s6=x + 2x*y,
s4=s6 + 3,

3
a(2,2)=s4 - x,

d=s5 *s6*v5}

—
% The above delivered warning is caused by the decloupling of a and its
% status as matrix. Therefore a(1,2) can function in the rhs of a(2,1).
% After an ARESTORE instruction a can restart its life as matrix_id.

% —_—

4 SPECIAL SCOPE 1.5 FEATURES 59

a;
a

ARESTORE a$

aj;

[x+y+z XKy]
[]
[3]
[(x + y)*xxxy (x + 2%y + 3) - x]

4.3 Horner-rules: GHORNER and ALGHORNER

Horner-rule based expression modification is a SCOPE facility, called GHORNER.
The syntax of the command is similar to the GSTRUCTR syntax:

<REDUCE_command> = .- |
GHORNER <stat_group> [VORDER <id_seq>|;

The VORDER part is optional. Application of a (generalized) Horner-rule
assumes an identifier ordering. The syntax of the identifier sequence is:

<idseq> = <id>[,<id_seq>].

We assume the rhs’s in the stat_group to be polynomials in the identifiers,
partly or completely given in the id_seq. The left-to-right ordering of this se-
quence replaces the existing system identifier ordering. Identifiers, omitted
from the vorder sequence have a lower preference and follow the existing sys-
tem ordering. The rewritten rhs’s are presented as a side-effect. FORTRAN
notation is of course permitted. It is simply an extended print facility.

The PSOPFN-type variant of the GHORNER command is called ALGHORNER. Its
syntax is:
<function_application> = .- |

ALGHORNER (<arg_list> [,{<id_seq>}])

The syntax for the arg_list can be found in subsection 4.2. The result is
presented in the form of an algebraic mode list. An ALGHORNER application
can be used as (part of an) actual parameter of either an OPTIMIZE command

4 SPECIAL SCOPE 1.5 FEATURES 60

or an ALGOPT application.

Example 16

We illustrate the Horner-facilities by rewriting the expression of example 2,
before optimizing it. Observe that application of ALGHORNER in the default
algebraic mode setting is useless. Due to the algebraic mode regime the
rewritten expression is expanded again. We also show some Taylor-series
remodelling.

ON EXP$
Z:=a"2xb"2+10*%a"2*m”~6+a" 2*m” 2+2*a*xb*m”~4+2*%b"2*m"~6+b"2*m"2;

2 2 2 6 2 2 4 2 6 2 2
Z := a *b + 10%a *m + a *m + 2*a*xb*m + 2%b *m + b *m

GHORNER z:=z VORDER a;

2 6 2 2 4 2 6 2
z = (2%¥b *m + b *m) + ax(2*b*m + a*(b + 10*m + m))

GHORNER z:=z VORDER b;

2 6 2 2 4 2 6 2
z := (10%a *m + a *m) + b*x(2xa*m + bx(a + 2%m + m))

hlst:={z=z}$
ALGHORNER (hlst,{a,b,m});

2 2 2 6 2 2 4 2 6 2 2
{z=a *b + 10%a *m + a *m + 2*%a*xb*m + 2%b *m + b *m }

OPTIMIZE ALGHORNER(hlst,{a,b,m}) INAME s;

sl := m*m
sO := slx*sl
s2 := bxb
s4 := 2xs0

z := ax(a*(s2 + s1*x(10%s0 + 1)) + sd*b) + s2*s1*(sd + 1)
OPTIMIZE ALGHORNER(hlst,{b,m}) INAME s;

s2 := m*m

4 SPECIAL SCOPE 1.5 FEATURES

sO := s2%s2
sl := a*a
s4 := 2%*s0

z := bx(b*(s1 + s2%(s4 + 1)) + sd*a) + s2*(s1 + 10*s1%*s0)

61

4 SPECIAL SCOPE 1.5 FEATURES 62

% Hornering Taylor-series:

PROCEDURE taylor(fx,x,x0,n);
sub(x=x0,fx)+(FOR k:=1:n SUM(sub(x=x0,df (fx,x,k))*(x-x0) "k/factorial(k)))$

hlst2:={f1=taylor(e"x,x,0,4),f2=taylor(cos x,x,0,6)};

4 3 2
X + 4xx + 12%x + 24%x + 24
hlst2 := {fl=———---——————————— s
24
6 4 2
- x + 30%x - 360*x + 720
f2=-—————————— }
720

OPTIMIZE ALGHORNER(hlst2,{x});

24 + xx(24 + xx(12 + x*x(4 + x)))

f1 =
24
g7 = X*¥X
720 + g7x(g7*(30 - g7) - 360)
f2 = -

ON ROUNDED$

hlst2:=hlst2;

4 3 2
hlst2 := {f1=0.0416666666667*x + 0.166666666667*x + 0.5%x + x + 1,

6 4 2
£2= - 0.00138888888889*x + 0.0416666666667*x - 0.5*x + 1

}

OPTIMIZE ALGHORNER(hlst2,{x});

4 SPECIAL SCOPE 1.5 FEATURES

f1 := 1 + xx(1 + xx(0.5 + x*(0.0416666666667+*x + 0.166666666667)))
g9 = X*¥x
f2 := 1 + g9*(g9+%(0.0416666666667 - 0.00138888888889*g9) - 0.5)

63

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 64

5 File Management and Optimization Strategies

Both the OPTIMIZE command and the ALGOPT function accept input from
file(s). Obviously, this input ought to obey the usual syntactical rules, as
introduced in the previous (sub)sections.

The OPTIMIZE command is designed as a syntactical extension of REDUCE
itself, i.e. the meaning of its actual parameters is understood from the token-
context in the command. However, an ALGOPT application requires one, two
or three actual parameters without additional provisions or conditions. The
ALGOPT facility is added to provide a simple, user friendly, algebraic mode
tool. Therefore -in contrast with the OPTIMIZE command- it does not allow
to direct output to a file; the default REDUCE features for dealing with

output files can be applied. The previously given syntax requires some
extensions:
<SCOPE_application> ::= <OPTIMIZE command> | <ALGOPT application>

<OPTIMIZE command> :=
OPTIMIZE <object_seq> [IN <file_id_seq>] [OUT <file.id>] [INAME
<cse_prefix>] |
OPTIMIZE [<object_seq>] IN <file_id_seq> [OUT <file.id>] [INAME
<cse_prefix>]
<ALGOPT application> ::=
ALGOPT(<a_object_list>[,<string_id list>][,<cse_prefix>]) |
ALGOPT([<a_object_list>,| <string_id_list >[,<cse_prefix>])

The different variations for the object_seq and the a_object_list and the
meaning of cse_prefix are introduced in the subsections 3.1 and 3.2. The
syntax of the file handling features is:

<file_id_seq> = <filelid> [,<file_id_seq>]
<file_id> = <id> | <string_id>

<string_id list> = <stringid> | {<string_id_seq>}
<string_id_seq> = <string.id> [,<string-id_seq>]
<string_id> = "<id>" | "<id> . <f_extension>"

The differences in input-file management are introduced for practical rea-
sons. As stated above, the ALGOPT function can have up to three arguments.
To be able to distinguish the optional second argument from the first and
the last requires file-names to be given in the form of strings. The OPTIMIZE
command follows the ordinary REDUCE rules for file names.

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 65

File management can be used as a tool for input partioning. If m > 1 then
N™ > Zi?:l nk; for positive integers N and n; , such that N = Zle ;.
In view of the time-complexity of the optimization algorithm, it may be
worth the effort to partition SCOPE input of size N in k partitions, of sizes
n;, ©=1,...,k. We can start optimizing the contents of file fi.1, containing
the initial n,-sized piece of code, and store the result of this operation in file
fo.1. Consecutive steps provide an optimization of the combined contents of
the files fo.i and fi.(i+1), i=1,..., k-1. During this iterative process, or during
variations of this strategy, it is better not to perform a finishing touch. The
switch AGAIN, which is normally OFF, can be used, when set ON, to avoid
this. The switch serves an additional purpose. When switched ON storage of
partly optimized code in a file will include all relevant information, needed
to restore the required status of system generated sub-expression names.

We illustrate SCOPE’s file management facilities with example.

Example 17

We assume to have three files, called f1, f2 and 3. Each file contains only
one assignment. We simply show different variations of the use of these files.
With ON INPUTC the contents of the files is made visible.

ON INPUTC$

OPTIMIZE IN £f1,f2,f3 INAME s;

2
2 (x +y) 8 2 2
2x(sin(x) - cos(e) + 3%cos(x)) *(x + y) + 4xy + 4xy
el = 777"
3*x + 2%y
2
2 (x +y) 2 3
e2 := (4x(sin(x) - cos(e) + 2*xcos(x)) *(x + y)
2 2

+ (4xx - 4xy) - 6%x)/(8*x + 3%y - 2%x)

2
(x +y) 2 2
4xsin(cos(e)) + sin(x + y) + (4*x - x + 2%y)

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES

s3 :

s20

s6

s4
s8 :

3xy + f(x,g(- cos(x)))

sin(x)

=x+y

s31 :

s2 :

s44
s43 :
s36 :
s34 .
s10 :

el :

s13 :=
s33 :=

s30 :
s35 :

s20%*s20

s6
cos(e)
cos (x)
s3*s3 - s4
s31 + 3%s8
s2%s2
s44xs44
4xy
2%y
s34 + 3*x
836 + s36*y + 2%s6%*s43*s43

s31 + 2%s8
VESESS

s33 - x
3*y

66

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 67

833 - 2xs10 + 4*xs6%s20*%s13*s13

s35 + 2%s30
s21 := s34 + s30
4xsin(s4) + sin(s20) + s21*s21

s35 + f(x,g(- s8))

We repeat the same process. However, this time we apply input partitioning.
The switch AGAIN is turned ON. Output is redirected to the output file fo.1
in an OFF NAT fashion and ended with the required ;end; closure, thus
made ready for re-use during a next step. The default mode of operation
is OFF AGAIN and ON NAT. If the switch NAT is turned OFF file output is
automatically ended by ;end;.

Due to the ON INPUTC effect we can also observe that the identifiers gsym
and cses are apparently used to store relevant information about cse names.

ON AGAIN,INPUTCS

OPTIMIZE IN f1 OUT "fo.1" INAME s$

2 x +y) 8 2 2
2x(sin(x) - cos(e) + 3xcos(x)) *(x + y) + 4xy + 4xy

OPTIMIZE IN "fo.1",f2 OUT "fo.2" INAME t$

gsym := g0001

cses := s6
2

s6 = (x +y)

2 2 s6 8

4xy + 4*xy + 2%s6x(3*cos(x) + sin(x) - cos(e))
el 1= ~——7"7"""-"--"-"""-——-"-"""""""""""""""———
3*x + 2%y
2
2 (x +y) 2 3

e2 := (4x(sin(x) - cos(e) + 2xcos(x)) *(x + y)

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES

2 2
+ (4xx - 4xy) - 6*x)/(8*x + 3%y — 2%x)

OFF AGAIN$

ALGOPT({"fo.2","£3"},u);

gsym := g0002

cses := t23 + tl1ll + t26 + t7 + t17 + t19

t19 (= x +y

2
t17 = t19
t7 := cos(x)
2 t17
t26 := sin(x) - cos(e)
tll := 3*x + 2%y
2 8
4xy + 4xy + 2x(£26 + 3xt7) *tl7
el = e
t11
2
t23 = x
2
4%t23 - 2*%t1l + 4xt19*%(t26 + 2*t7) *t17
€2 IS
8%t23 - 2%x + 3%y
2
(x +y)
4xsin(cos(e)) + sin(x + y) + (4xx
€3 1= —mmm

3xy + f(x,g(- cos(x)))

68

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 69

**x*x f declared operator
**x* o declared operator
{u23=x + y,

2
u20=u23 ,

t7=cos(x),
ub=sin(x),

u20
ub=cos(e),

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 70
2

t26=ub - u6,

u33=2x*y,

t11=u33 + 3*x,

ul0=t26 + 3%t7,

2
u46=ull ,
2
u4b=u46 ,
u35=4x*y,
2
2*¥u20*ud4b + u3b*y + u3b
el=——-————————————— s
t11
2
t23=x ,

ul3=t26 + 2%t7,

u36=4%t23,
u31=u36 - x,
u34=3*y,
2

- 2xt11 + 4*ul3 *u20%u23 + u36

e2=————————— s
2*¥u3dl + u34
u24=u31 + u33,
2

sin(u23) + 4*sin(u6) + u24

e3=——— e }

f(x,g(- t7)) + u34

5 FILE MANAGEMENT AND OPTIMIZATION STRATEGIES 71

Observe that the initial characters of the sub-expression names indicate their
moment of generation. We used £ and g as operators. Therefore, a warning
was produced ahead of the ALGOPT output. Since an OPTIMIZE command
produces output as a side-effect these warnings were not given earlier.

O

6 GENERATION OF DECLARATIONS 72

6 Generation of Declarations

GENTRAN’s DECLARE statement can be used as an optional extension of
the OPTIMIZE command, and as ilustrated in example 18. The syntax of
such an extension is in accordance with the GENTRAN rules:

<OPTIMIZE command> :=
OPTIMIZE <object_seq> [IN <file_id_seq>] [OUT <file_id>]
[INAME <cse_prefix>] [DECLARE <declaration_group>] |
OPTIMIZE [<object_seq>] IN <file_id_seq> [OUT <file_id>]
[INAME <cse_prefix>| [DECLARE <declaration_group>]

The syntax of the declaration_group is:

<declaration_group> == <declaration> | <« <declaration list> >
<declaration_list> <declaration>[; <declaration list>]

<declaration> = <range_list>: IMPLICIT <type> | <id.ist>:<type>
<range_list> = <range>[,<range list>]

<range> = <id> | <id> — <id>

<id list> n= <id>[,<id list>]

<type> = integer | real | complex | real*8 | complex*16

The symbol table features of GENTRAN are used. During the subtask R
(see subsection 2.3) of an OPTIMIZE command evaluation, all typing in-
formation is installed in the symbol table. Once optimization is ready all
relevant information for completing the declarations ought to be known, i.e.
the contents of the symbol table and the result of the optimization opera-
tions, collected in prefix form in a list, called prefixlist. This prefixlist
is employed do decide which not yet typed identifiers and system selected
cse names have to be entered in the symbol table. We make use of ear-
lier provided information, delivered via the DECLARE option, (sub)expression
structure and the normal hierarchy in data types. The strategy to achieve
this form of dynamic typing is based on chapter 6 of [?]. Once the table is
completed a list of declarations is produced and precedes the other SCOPE
output. SCOPE output is by default given in REDUCE notation. There-
fore such lists of declarations are also given in REDUCE text. Incomplete
initial typing information can lead to overtyping after optimization, such as
complex in stead of real, for instance. It can therefore lead to erroneous
results and even to an error message. A safe procedure is to use the DECLARE

6 GENERATION OF DECLARATIONS 73

option of the OPTIMIZE command for typing all identifiers, occuring in the
input set Eg

Alternative output can be obtained via an application of the function OPTLANG.
This function accepts one argument from the set {fortran, c, ratfor,
pascall] £90, nil}. The fortran(77) choice can also be made by turn-
ing ON the switch FORT. The nil option is necessary if one wants to switch
back to the usual REDUCE output. not yet generally available. The output
modules of GENTRAN are used for producing formatted code in the user
selected target language. The £90 option, for the production of fortran90
code, is not yet provided by the standard GENTRAN version [?].

Especially the above given syntax rules for typing require some additional
explanation:

e The corresponding types in Fortran are integer, real, complex, double
precision and complex*16.

e The GENTRAN switch DOUBLE is automatically turned ON, when a
type real*8 or type complex*16 is introduced in a DECLARE option.
The same mode of operation is introduced when floating point numbers
appear in SCOPE input. Fixed floats do not produce this side effect.

e When generating fortran code we have to be aware of a possibly ex-
isting statement length limitation. If one is afraid that a declaration
statement will become too long, for instance due to a huge number,
dynamically added cse-names, it may be better to use IMPLICIT typ-
ing.

e C neither supports IMPLICIT types nor has the types complex and
complex*16. The remaining types are denoted by int, float and
double, respectively.

e Array and/or matrix definitions are also considered to be id’s in id_list’s
in declarations. However, we have to be aware of the instantaneous re-
placement of array- and /or matrix entries, when expressions are simpli-
fied. Therefore, we have to use operators, functioning as array and/or
matrix names in code we want to optimize. We return to this question
in the sections 7 and 8.

When the ON/OFF AGAIN strategy is applied we have to be aware of the
above outlined declaration strategy. The last OPTIMIZE command, executed

!The pascal module of GENTRAN is not error free. Especially the template file
features do not function correctly.

6 GENERATION OF DECLARATIONS 74

directly after choosing OFF AGAIN, has to be extended with the DECLARE
option.

Array and/or matrix names only occur in literally parsed information. In
all other situations we have to make use of REDUCE operators. Normally,
function applications inside SCOPE input are instantaneously replaced by
newly selected cse names after putting them in the function table. Usu-
ally array and/or matrix entries are considered to be function applications.
However, when due to a DECLARE option array and/or matrix names are
known via the contents of the symbol table, such entries are substituted
back before SCOPE produces output.

Example 18

A simple OPTIMIZE command, extended with a DECLARE option, is executed
for the various output options of GENTRAN, including the £90 alternative.

OPTLANG fortran$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

INTEGER B(5),I,S10,89
REAL A(4,4),%X(4),Y(5)
S10=I+1

S9=I-1
X(S10)=A(S10,89)+B(I)
Y(89)=A(S9,510)-B(i)

OPTLANG ratfor$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

integer b(5),i,s10,s9
real a(4,4),x(4),y(5)

{
s10=i+1
s9=i-1
x(s10)=a(s10,s9)+b (1)
y(s9)=a(s9,s10)-b(i)
}

OPTLANG c$

6 GENERATION OF DECLARATIONS 75

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s
DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

int b[6],1,s10,s9;
float a[b][5],x[5],y[6];

{
s10=i+1;
s9=i-1;
x[s10]=a[s10] [s9]+b[i];
y[s9]=als9] [s10]-b[i];
3

OPTLANG pascal$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

var
s9,s10,1i: integer;
b: array[0..5] of integer;
y: array[0..5] of real;
x: array[0..4] of real;
a: array[0..4,0..4] of real;

begin
s10:=i+1;
s9:=i-1;

x[s10] :=a[s10,s9]+b[i];
y[s9]:=als9,s10]-b[i]
end;

OPTLANG nil$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

integer b(5),i,s10,s9
real a(4,4),x(4),y(5)

s10 := i + 1
s9 (=1 -1
x(s10) := a(s10,s9) + b(i)
y(s9) := a(s9,s10) - b(i)

6 GENERATION OF DECLARATIONS 76

OPTLANG fortran$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real*8; b(5):integer>>$

INTEGER B(5),I,S10,59

DOUBLE PRECISION A(4,4),X(4),Y(5)
S10=I+1

S9=I-1

X(S10)=A(S10,S9)+B(I)
Y(S9)=A(S9,510)-B(I)

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s
DECLARE << x(4),y(5):real; b(5):complex>>$

**xxxx Type error:
real x(4),y(5)
complex b(5)
(integer all) s9
integer s5,1

real := complex(all)
**xxx Wrong typing
Cont? (Y or N)

We can restart REDUCEand rerun the example with the Fortran90 version
of SCOPE. It results in:

LOAD_PACKAGE scope90$

OPTLANG £90$

OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
INAME s

DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$

REAL,DIMENSION(4,4)::A
INTEGER,DIMENSION(5)::B
INTEGER::I1,S10,S9
REAL,DIMENSION(4)::x
REAL,DIMENSION(5) ::y
S10=I+1

S9=I-1
X(810)=A(S10,89)+B(I)
Y(89)=A(S9,510)-B(I)

6 GENERATION OF DECLARATIONS 77

6.1 Coefficient Arithmetic and Precision Handling

REDUCE knows a variety of coefficient domains, as presented in subsec-
tion 9.11 of the REDUCE 3.6 manual [?], entitled Polynomial Coefficient
Arithmetic. As stated in subsection 3.1 SCOPE supports integer and real
coefficients. By turning ON the switch ROUNDED we introduce float arithmetic
for coefficients. The operator PRECISION can be applied to change the de-
fault, machine dependent precision. Internally, REDUCE uses floating point
numbers up to the precison supported by the underlying machine hardware,
and so-called bigfioats for higher precision. The internal precision is two
decimals greater than the exernal precision to guard against roundoff inac-
curacies. Rounded numbers are normally printed to the specified precision.
If the user wishes to print such numbers with less precision, the printing pre-
cision can be set by the command PRINT_PRECISION. If a case arises where
use of the machine arithmetic leads to problems, a user can force REDUCE
to use the bigfloat representation by turning ON the switch ROUNDBF, which
is normally OFF. GENTRAN, and thus SCOPE as well, support bigfloat no-
tation. However the precision is a responsibility of the user. A possibility
is to use the PRINT_PRECISION command, both for algebraic mode output
and for output in a selected target language, like fortran77. SCOPE uses
the given precision for selecting cse’s. Although complex arithmetic is not
supported in SCOPE, a simple alternative is provided. When using float
arithmetic in REDUCE the protected name I can be used to denote y/—1.
If the I is included in a declaration list as an identifier of type complex(!*),
its assumed value is automatically put ahead of the resulting optimized code.
We illustrate the different possibilities in example 19. Comment is included.

Example 19

OPTLANG fortran$
ON ROUNDED, DOUBLE$

/—
% We start with precision 6. The returned value is the internal
% precision supported by the underlying machine hardware.

—
PRECISION 6;

12

6 GENERATION OF DECLARATIONS 78

OPTIMIZE x1:= 2 *a + 10 * b,
x2:= 2.00001 =*a + 10 * b,
x3:= 2 *a + 10.00001 * b,
x4:= 6 *a + 30 * b,

x5:
INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

2.0000001*a + 10.000001 * b

DOUBLE PRECISION A,B,S1,X1,X2,X3,X4,X5
S1=10*B

X1=S1+2%A

X2=51+2.00001D0O*A

X3=X1

X4=3*X1

X5=X1

0,

y—
% Explanation: X1 is a cse of X3, X4 and X5, but not of X2, because
% the coefficient 2.00001 is given in 6 decimal digits.

% Increase in precision will show this.

% —_—

PRECISION 7$

OPTIMIZE x1:= 2 *a + 10 * b,
x2:= 2.00001 =*a + 10 * b,
x3:= 2 *a + 10.00001 * b,
x4:= 6 *a + 30 * b,
x5:= 2.0000001*a + 10.000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2*A

S2=10*B

X1=82+81

X2=S2+2.00001D0*A

X3=S1+1.000001D1%*B

X4=3*X1

X5=X1

PRECISION 8$

6 GENERATION OF DECLARATIONS 79

OPTIMIZE x1:= 2 *a + 10 * b,
x2:= 2.00001 =*a + 10 * Db,
x3:= 2 *a + 10.00001 * b,
x4:= 6 *a + 30 * b

-

x5:= 2.0000001*a + 10.000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2%A

52=10*B

X1=S2+31

X2=52+2.00001D0O*A

X3=S1+1.000001D1*B

X4=3*X1

X5=2.0000001D0O*A+1.0000001D1%*B

0

—
% All rhs’s were taken literally. Let us now increase precision and
% simplify the rhs’s before optimization. It is in fact a repetition
% of the examples above, this time with a larger precision.

% —_—

PRECISION 20$

OPTIMIZE x1:=:2 *a + 10 * b,
x2:=:2.0000000000000000001 *a + 10 * b,
x3:=:2 *a + 10.0000000000000000001 * b,
x4:=:6 *a + 30 * b,
x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,52,X1,X2,X3,X4,X5
S1=2%A

S52=10%B

X1=52+51

X2=52+2.0000000000000000001D0O*A
X3=S1+1.0D1%B

X4=3%*X1

X5=1.0D0*X1

PRECISION 21$%

6 GENERATION OF DECLARATIONS 80

OPTIMIZE x1:=:2 *a + 10 * b,
x2:=:2.0000000000000000001 =*a + 10 * b,
x3:=:2 *a + 10.0000000000000000001 * b,
x4:=:6 *a + 30 * b,
x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b
INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2x%A
S2=10*B
X1=S2+351
X2=S2+2.0000000000000000001D0*A
X3=S1+1.00000000000000000001D1*B
X4=3%X1
X5=2.0D0*A+1.0D1%*B
PRECISION 22%
OPTIMIZE x1:=:2 *a + 10 * b,
x2:=:2.0000000000000000001 =*a + 10 * b,
x3:=:2 *a + 10.0000000000000000001 * b,
x4:=:6 *a + 30 * b,
x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,82,X1,X2,X3,X4,X5
S1=2%A

S2=10%B

X1=82+81

X2=52+2.0000000000000000001D0O*A
X3=S51+1.00000000000000000001D1*B

X4=3%*X1
X5=2.000000000000000000001D0O*A+1.0D1*B

/—
% However, we can observe some differences in both modes of operation, when
% selecting a precision around the precision supported by the undelying

% machine hardware. Then the switch ROUNDBF can better be turned ON.

/A—

OFF ROUNDBF$
PRECISION 12%

6 GENERATION OF DECLARATIONS 81

OPTIMIZE x1:= 2.00 *a + 10.00 * b,
x2:= 2.00000000001*a + 10 * b,
x3:= 2 *a + 10.000000001* Db,
x4:= 6 *a + 30 * b,
x5:= 2.0000000000001*a + 10.0000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2%A

S2=10%B

X1=S2+31

X2=S52+2.00000000001D0*A
X3=S1+1.0000000001D1x*B

X4=3%X1

X5=X1

OPTIMIZE x1:=:2.00 *a + 10.00 * b,
x2:=:2.00000000001*a + 10 * b,
x3:=:2 *a + 10.000000001* b,
x4:=:6 *a + 30 * b,
x5:=:2.0000000000001*a + 10.0000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2x%A

S52=10*B

X1=S2+81

X2=82+2.0D0*A

X3=S1+10.0D0*B

X4=3%X1

X5=X1

/A—
% Observe that simplification prior to optimization leads to internal
% roundings, which differ from the rounding used for literally taken
% coefficients. This difference disappeares with ON ROUNDBF.

/A—

ON ROUNDBF$

6 GENERATION OF DECLARATIONS 82

OPTIMIZE x1:

= 2.00 *a + 10.00 * b,
x2:= 2.00000000001*a + 10 * b,
x3:= 2 *a + 10.000000001%* b,
x4:= 6 *a + 30 * b,
x5:= 2.0000000000001*a + 10.0000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

OPTIMIZE x1:

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2%A

52=10*B

X1=S2+31

X2=52+2.00000000001D0*A
X3=S1+1.0000000001D1*B

X4=3%X1
X5=X1
=:2.00 *a + 10.00 * b,
x2:=:2.00000000001*a + 10 * b,
x3:=:2 *a + 10.000000001* Db,
x4:=:6 *xa + 30 * b,
x5:=:2.0000000000001*a + 10.0000000000001 * b

INAME s
DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$

DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
S1=2%A

S2=10%B

X1=S2+31

X2=52+2.00000000001D0O*A
X3=S1+1.0000000001D1*B

X4=3%X1

X5=X1

Complex arithmetic is not supported in SCOPE. However the Fortan equivalent
of I, a protected name in REDUCE, is automatically created, ahead of the
optimized code, whenever I is included in the declaration as a type complex
or a type complex*16 identifier.

OPTIMIZE a:=b+c
INAME s
DECLARE <<a,b,i,c: complex>>;

6 GENERATION OF DECLARATIONS

COMPLEX*16 B,I,C,A
I=(0.0D0, 1.0D0)
A=B+C

OFF DOUBLES$

OPTIMIZE a:=b+c
INAME s
DECLARE <<a,b,i,c: complex>>;

COMPLEX B,I,C,A
I=(0.0, 1.0)
A=B+C

83

7 DEALING WITH DATA DEPENDENCIES 84

7 Dealing with Data Dependencies

SCOPE is designed to optimize blocks B of straight line code, i.e. sequences
of n assignment statements S; of the form \; := p;, where ¢ = 1,--- n.
If an identifier occurs in J;, it is said to be defined in S;. All identifiers
occuring in p; are said to be used in S;. The set DEF(S;) is formed by
the identifiers defining S;, usually only one. The set USE(S;) is formed
by the identifiers, which are used in S;. The relation DEF(S;) € USE(S;),
for 1 < i < j < n,is called a flow dependency and denoted by S; — S;.
The relation DEF(S;) € USE(S)), for 1 < j < i < n is called an anti
dependency and denoted by S; + S;. The set of inputs of B, denoted
by I(B), consists of identifiers, which are used in B, before being defined,
if defined at all. The set of outputs of B, denoted by O(B), consists of
the set of all last definitions of identifiers, occuring in B. So a block of
straight line code can be introduced as a triple B = {S,I,0}, where S
stands for the sequence S1;59;---;S,_1;5,, and where I and O define the
inputs and outputs, respectively. When optimizing source code defined by B,
i.e. the sequence S, the intention is to mechanically produce an equivalent,
but computationally less complex sequence, preserving the relation between
inputs and outputs. Due to anti dependencies, i.e. redefinitions of the rules
for computing identifier values or stepwise computing such values, | O(B) |<
n is possible. But that in turn implies that some of the used identifiers,
although being literally identical, represent different values. Therefore, a
mechanical search for cse’s can only be maintained if these critical identifiers
are adequately renamed internally before the optimization process itself is
started. As long as the relation between I(B) and O(B) is preserved it is
even allowed to partly maintain these additional names, when presenting the
results of an optimization operation. Furthermore it is worth noting that
dead code can be left out, when ever occuring. Such code can be introduced
through redundant assignments. The SCOPE features for dealing with data
dependencies are illustrated, using the following artificial piece of code:

7 DEALING WITH DATA DEPENDENCIES 85

S1 1 g1 = g+ hot

Sy by+1 = al,g,xﬂ.(g + h.?"f)

S3 ¢l = h.or.ait+e/9

Si o2 = cl.aj z41 + sin(d)

Sy a1,z+1 = cl+4+2

S¢ : d = byt1.a1241

S7 H a171+2,x = a17$+1.by+1.c/(d.g2)

Sg by+1 = Q1.g4+1 T by+1 + Sin(d)
So ¢ aig41 = byyi1.c+h/(g+ sin(d))

Sy : d = ke+ d.(al,Hx + 3)

Si1 ot oe = d.(a1,142 + 3) + sin(d)
S : f = d.(a171+x + 3) + szn(d)
Si3 g d.(3 + a171+$) + f

The different flow and anti dependencies can be vizualized in the following
way:

x {1, p2,p3, P45 X5, P6, AT, P75 PR3 A9, P105 P11, P125 P13)
y {2, p6,P7, A8, P8, P9}

The identifiers, occuring in the piece of code given above, can be defined,
can be used or can play both roles. Identifiers, used in one or more of the
Ai,i = 1---n figure in subscript expressions. The set notation { - - - } is used
to explicitly describe USE sets. Since all DEF sets consist of one element
only, we omitted the set notation for the DEF sets. This provides a simple
tool to distinguish flow and anti dependencies:

7 DEALING WITH DATA DEPENDENCIES 86

arz+1 1 A= {ps,pat As = {pe, pr, pst Ao — {p10, p11, P12, P13}
g : {p1,p2, 03,07, 09} + A13

h {p1,p2,03,p0}

r : {p1,p2,p3}

f : A{p1,p2} + A2 — i3

by+1 : A2 — {pe, p7,p8} + As — {po}

a12.z+1 ¢ {p2} + M

cl A3 — {P4a P5}

azive : {p3}

c2 DV

d : A{pa} # Xe — {p7,p8,p9, P10} - Ao — {p11,p12, P13}
c . {pr,po}

k : {p1wo}

e : {pwo} + A2

We observe that
I(B) = {.T, Y, 9, h7 T, f7 12,241,321+, d, C, k}, 6}7

O(B) = {a‘l,IBer 9, f7 by+17 ai,2.x2+41, Cla 027 d7 6}

and thus, that
I(B)NO(B) # 0.

The identifiers a; 14, and d are redefined twice and the identifier b,,1 once.
Only the input occurrences and the last output definitions need to be pre-
served.

We also observe that some of the identifiers are subscripted. In our example
the subscript expressions are constructed with input identifiers only. More
general situations are conceivable. The set of subscript expressions contains
cse’s. Since our optimization strategy is based on an all level approach
expressions, like 1 4+ x and y + 1 are certainly discovered as cse’s.

An OPTIMIZE command can be extended with a DECLARE option, indicating
that both a and b are array names. Their subscript expressions are opti-
mized. In addition, the a and b entries are considered to be array entries,
and not as function applications. The latter will happen when the DECLARE
option is omitted. Vector architectures make often use of machine specific
optimizing compilers. Therefore it may be better not to optimize the subset
of subscript expressions. We implemented some facilities to take such ma-
chine specific limitations into account. When turning ON the switch VECTORC

7 DEALING WITH DATA DEPENDENCIES 87

the finishing touch is omitted and subscript expressions are not optimized.
The function

VECTORCODE <a_or_m_id_seq>

can be used to operate more selectively. The a_or_m_id_seq consists of one
or more array and/or matrix names, separated by comma’s. Only the actual
parameters of VECTORCODE are assumed to be names of arrays. So only their
subscript expressions are disregarded during an optimization process. We
can undo the effect of the VECTORCODE setting with a command of the form:

VCLEAR <a_or_m_id_(sub)seq>

The actual parameters are supposed to be taken from the sequence of actual
parameters of its counterpart, the function VECTORCODE.

The different settings are now illustrated in:
Example 20

The above given block of code B = {S,I,0} is optimized in five different
situations. To start with we hand it over to SCOPE, using an OPTIMIZE
command, without using the DECLARE option. We observe, looking at the
results, that some renaming of non significant identifier definitions have been
performed. The first occurrence of a1 14, is replaced by s34, the second by
s4. The first occurrence of b, is replaced by s3, but the occurrences of d,
a scalar identifier, are maintained.

Especially the role of the scalar d is quite interesting. The first definition of
d is given in Sg In S7 d is used twice: explicitly in the denominator and in
a hidden way in the numerator as well. The optimized version of S7 shows
a factor d/d. The reason is that d locally replaces an internally created cse
name, substituted for pg and for part of the numerator of p7. Like illustrated
in example 13 a second SCOPE application can further simplify p7. The
scalar d is also used as argument of the sin-function in Sy, Sg, Sg, S11 and
S12. The d-values in Sy, in {Ss, S9} and in {Si1, S12} are all different, due
to the redefinitions in Sg and in S19. Therefore we recognize two different
cse’s, containing sin(d): s24 and e. The role of aj 11 is of course very
similar, albeit less transparant, due to the renamings.

The second run showes that adding a DECLARE option does not influence
the form of the output in this particular case. Besides the production of
declarations, the result of both runs is identical. All relevant input and
output names are preserved in both runs.

7 DEALING WITH DATA DEPENDENCIES

OPTIMIZE a(l,x+1) := g+h*r"f,
b(y+1) := a(1,2*x+1)*(g+h*r"f),
ci := (h*r)/g*a(2,1+x),
c2 := cl*a(l,x+1) + sin(d),
a(l,x+1) := c1°(5/2),
d := b(y+1)*a(l,x+1),
a(l,1+2%x):= (a(l,x+1)*b(y+1)*c)/(d*g"2),
b(y+1) := a(l,1+x)+b(y+1) + sin(d),
a(l,x+1) := b(y+1)*c+h/(g + sin(d)),
d 1= kxe+d*(a(l,1+x)+3),
e := dx(a(l,1+x)+3) + sin(d),
f := d*(3+a(1,x+1)) + sin(d),
g i= dx(3+a(l,x+1))+f
INAME s$
sO :=x + 1
f
s34 :=r *h + g
s2 :=1+y
s6 = 2%xx + 1
s3 := s34*a(1,s6)
r*h
cl := a(2,s0)*————-
g
c2 := sin(d) + s34xcl
s4 := sqrt(cl)*clx*cl
d := s4%s3
d*c
a(l1,86) = ——————-
g*g*d

s24 := sin(d)
b(s2) := s4 + s3 + s24

a(1,s0) := ————————- + b(s2)*c
g + s24

s29 := 3 + a(1,s0)

d := s29%d + exk

s33 := s29%d

e := 833 + sin(d)
f := e
g =833 + £

ON FORT$

88

7 DEALING WITH DATA DEPENDENCIES 89

OPTIMIZE a(l,x+1) := g+h*r"f,
b(y+1) 1= a(l,2*x+1)*(g+h*r"f),
cl 1= (hx*r)/g*xa(2,1+x),
c2 := cl*xa(l,x+1) + sin(d),
a(l,x+1) := c1°(5/2),
d := b(y+1)*a(l,x+1),
a(l,1+2xx):= (a(l,x+1)*b(y+1)*c)/(d*g~2),
b(y+1) := a(l,1+x)+b(y+1) + sin(d),
a(l,x+1) := b(y+1)*c+h/(g + sin(d)),
d := krxe+d*(a(l,1+x)+3),
e := d*x(a(l,1+x)+3) + sin(d),
f := dx(3+a(l,x+1)) + sin(d),
g := dx(3+a(l,x+1))+f

INAME s
DECLARE <<a(5,5),b(7),c,cl1,c2,d,f,g,h,r:real*8; x,y:integer>>$

INTEGER X,Y,S0,S2,S6

DOUBLE PRECISION C,H,R,S34,83,C1,02,84,824,B(7),A(5,5),829,K,D,833
’E:F’g

S0=X+1

S34=R**xF*H+G

S2=1+Y

S6=2xX+1

$3=834%A(1,36)

C1=A(2,80)* ((R*H)/G)

C2=DSIN(D)+S34*C1

S4=DSQRT (C1)*C1*C1

D=84%33

A(1,86)=(D*C)/ (G*G*D)

$24=DSIN(D)

B(S2)=84+33+524

A(1,S80)=H/ (G+S24)+B(S2) *C

§29=3+A(1,80)

D=829*D+DEXP (1.0D0) *K

$33=829%D

E=S33+DSIN(D)

F=DEXP (1.0D0)

G=S33+F

OFF FORT$

Observe the differences in the f and F assignments. When generating
fortran77 code all right hand side occurrences of e are automatically consid-

7 DEALING WITH DATA DEPENDENCIES 90

ered as appearances of the base of the natural logarithm and are translated
accordingly.

The third run is influenced by turning ON the switch VECTORC. We observe
that all array references are substituted back, without having replaced re-
peatedly occuring identical subscript expressions by internally selected cse
names.

The fourth and the last run are governed by the functions VECTORCODE and
VCLEAR, after having turned OFF the switch VECTORC.

ON VECTORC$

OPTIMIZE a(1l,x+1) := gt+h*r"f,
b(y+1) 1= a(l,2%x+1)*(g+h*r f),
ci := (h*r)/g*a(2,1+x),
c2 := cl*a(l,x+1) + sin(d),
a(l,x+1) := c1°(5/2),
d := b(y+1)*a(l,x+1),
a(l,1+2xx) := (a(l,x+1)*b(y+1)*c)/(d*g~2),
b(y+1) := a(1,1+x)+b(y+1) + sin(d),
a(l,x+1) := b(y+D)*c+h/(g + sin(d)),
d 1= kxe+d*(a(l,1+x)+3),
e := dx(a(1,1+x)+3) + sin(d),
f := d*x(3+a(1l,x+1)) + sin(d),
g 1= dx(3+a(l,x+1))+f

INAME s$

f
a(l,x + 1) :=r *h + g
b(y + 1) := a(l,x + 1)*a(l,2%x + 1)

r*h
cl := a(2,x + 1)*————-
g
c2 := sin(d) + a(l,x + 1)*ci

2
a(l,x + 1) := sqrt(cl)*cl
d := a(l,x + 1)*b(y + 1)

7 DEALING WITH DATA DEPENDENCIES

a(l,1 + 2%x) := —————-

s20 := sin(d)
b(y + 1) = a(l,x + 1) + b(y + 1) + s20

a(l,x + 1) = ————————- + b(y + D*c
g + s20

256 := a(l,x + 1) + 3

d := s2bxd + exk

528 := s2b%d

e := 828 + sin(d)
f := e
g =828 + £

OFF VECTORC$
VECTORCODE a,b$

OPTIMIZE a(l,x+1) := gt+h*r"f,
b(y+1) 1= a(l,2*x+1)*(gt+h*r"f),
cl := (hx*r)/g*xa(2,1+x),
c2 := cl*a(l,x+1) + sin(d),
a(l,x+1) := c1°(5/2),
d := b(y+1)*xa(l,x+1),
a(l,1+2xx):= (a(l,x+1)*b(y+1)*c)/(d*g"2),
b(y+1) := a(l,1+x)+b(y+1) + sin(d),
a(l,x+1) := b(y+1)*c+h/(g + sin(d)),
d 1= kxe+d*(a(l,1+x)+3),
e := d*x(a(1,1+x)+3) + sin(d),
f := d*(3+a(1,x+1)) + sin(d),
g = d*(3+a(l,x+1))+f

INAME s$

f

a(l,x + 1) :=r *h + g
b(y + 1) := a(l,x + 1)*a(1,2*x + 1)

r*h
cl := a(2,x + 1)*———
g
c2 := sin(d) + a(l,x + 1)*c1

a(l,x + 1) := sqrt(cl)*cl*cl
d := a(l,x + D*b(y + 1)
d*c

7 DEALING WITH DATA DEPENDENCIES

a(1,1

s22
b(y +

a(l,x

s27
d :=
s30
e :
f :=
g :

VCLEA

OPTIM

INAME

a(l,x
sl :=
s2 :=

cl :=
c2 :=
a(l,x

d :=

a(1,1

+ 2%x) 1= ——————-
g*g*d
:= sin(d)
1) :=all,x + 1) + b(y + 1) + s22
h
+ 1) 1= —mmmm + b(y + 1D*c
g + 822
=3+ a(l,x + 1)
s27*d + exk
1= s27*d
s30 + sin(d)
e
s30 + £
R b$
IZE a(l,x+1) := g+h*r°f,
b(y+1) := a(1,2*x+1)*x(g+h*r~f),
cl 1= (hxr)/g*a(2,1+x),
c2 := cl*a(l,x+1) + sin(d),
a(l,x+1) := c1°(5/2),
d := b(y+1)*a(l,x+1),
a(l,1+2xx):= (a(l,x+1)*b(y+1)*c)/(d*g~2),
b(y+1) := a(l,1+x)+b(y+1) + sin(d),
a(l,x+1) := b(y+1)*c+h/(g + sin(d)),
d := kxe+d*(a(l,1+x)+3),
e := dx(a(l1,1+x)+3) + sin(d),
f := d*(3+a(1,x+1)) + sin(d),
g := dx(3+a(l,x+1))+f
s$
f
+1) :=r xh + g
y+1
a(l,x + 1)*xa(1,1 + 2%x)
r*h
a(2,1 + x)*————-

sin(d) + a(l,x + 1)*cl
+ 1) := sqrt(cl)*cl*cl
a(l,x + 1)*s2
d*xc
+ 2%x) = ———————

92

7 DEALING WITH DATA DEPENDENCIES

g*g*d
23 := sin(d)
b(s1l) := a(l,x + 1) + s2 + 823

a(l,x + 1) = ————————- + b(sl)*c
g + 823

28 := 3 + a(1,x + 1)

d := s28xd + exk

s31 := s28%*d
e := 831 + sin(d)
f :=e

=831 + f

93

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 94

8 A Combined Use of GENTRAN and SCOPE 1.5

As already stated in subsection 2.4 each GENTRAN command is evalu-
ated separately, implying that the symbol table, required for the production
of declarations, is fresh at the beginning of a GENTRAN command eval-
uation. Turning ON the switch GENTRANOPT leads to the optimization of
the arithmetic code, defined in the GENTRAN command, obeying the new
GENTRANOPT regime. In addition, we can observe that each separate GEN-
TRAN command can produce its own declarations.

To increase flexibility we introduced facilities for making declarations, asso-
ciated with a group of GENTRAN commands and for the optimization of
the arithmetic in such a group as well. We implemented two function pairs
of parameter-less functions:

(DELAYDECS, MAKEDECS)
and
(DELAYOPTS, MAKEOPTS).

Both pairs function as ”brackets” around groups of statements. The OPTS
pair can be used (repeatedly) inside a DECS pair. Both pairs achieve an
alterned GENTRAN mode of operation. All GENTRAN productions be-
tween such a pair are collected in an internal format, say if 1ist. The
DELAY. .. functions initialize the modified mode of operation. The MAKE. . .
functions restore the previous mode of operation in combination with the
production either of declarations, associated with the contents of if_list,
or of an optimized representation of the contents of if _list.

Example 21 serves to introduce a variety of approaches to code generation,
based on the use of these pairs of brackets and of the switch GENTRANOPT.
We illustrate a more realistic use in example 22: generation of optimized
fortran77 code for the computation of the entries of the inverse of a sym-
metric (3,3) matrix. It is a continuation of example 8 in subsection 3.1 and
example 11 in subsection 3.2. It was also presented in [?], albeit in a
slightly different form.

Example 21

The output of combined GENTRAN and SCOPE operations is by default
given in fortran77 notation. We illustrate the different possibilities in the
form of small pieces of code.

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 95

e The pair (DELAYDECS, MAKEDECS) encloses four GENTRAN commands.
The first is needed to initialize the symbol table. The literal translation
in internal format of the last three commands is stored in the if _list.
The application of MAKEDECS leads to the restoration of the default
GENTRAN regime, applied to the if _1list and leading to the result,
presented in the form of fortran77 code.

DELAYDECS$

GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
GENTRAN a:=b+c$

GENTRAN d:=b+c$

GENTRAN <<q:=b+c;w:=b+c>>$

MAKEDECS$

REAL A,B,C,D,Q,W
A=B+C
D=B+C
Q=B+C
W=B+C

e We repeat the previous commands, but execute them in a slightly
different setting by turning ON the switch GENTRANOPT. This time the
arithmetical rules in each of the three last GENTRAN commands are
optimized separately. This is illustrated by the form of the output.
The last piece of code contains the cse B+C, which is presented under
the name Q in the fortran77 output.

ON GENTRANOPTS$
DELAYDECS$

GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
GENTRAN a:=b+c$

GENTRAN d:=b+c$

GENTRAN <<q:=b+c;w:=b+c>>$

MAKEDECS$

REAL B,C,A,D,Q,W
A=B+C

D=B+C

Q=B+C

W=Q

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 96

OFF GENTRANOPT$

e We can improve the optimization strategy by using the function pair
(DELAYOPTS, MAKEOPTS) in stead of the pair (DELAYDECS, MAKEDECS).
All blockwise combinable arithmetic is collected. These blocks of
straight line code are optimized as separate input sets Ei,, when acti-
vating MAKEQOPTS.

DELAYOPTS$

GENTRAN a:=b+c$
GENTRAN d:=b+c$
GENTRAN <<q:=b+c;w:=b+c>>$

MAKEQOPTS$

A=B+C

D=A

Q=A

W=A

e We can furhter improve the optimization strategy by using the function

pah‘(DELAYOPTS,MAKEUPTS)inskk}the pah‘(DELAYDECS,MAKEDECS)
All blockwise combinable arithmetic is collected. These blocks of
straight line code are optimized as separate input sets Ei,, when acti-
vating MAKEOPTS. But this time the results are added in internal format
to the if _list version, being maintained, as to obey the DELAYDECS
regime.

DELAYDECS$
GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
DELAYOPTS$
GENTRAN a:=b+c$
GENTRAN d:=b+c$
GENTRAN <<q:=b+c;w:=b+c>>$
MAKEOPTS$
MAKEDECS$
REAL B,C,A,D,Q,W

A=B+C
D=A

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 97

Q=A
W=A
e A slightly more realistic example suggests how easily optimized code
for sets of matrix entries can be obtained. We use two identical ma-
trices a and d. The latter is not introduced at the REDUCE level,
but simply used inside a GENTRAN command. The entries of a are
initialized inside a double for-loop. After each initialization a GEN-
TRAN command is applied, using the special assignment operator
::=: for correctly combining entry names and entry values. The RE-
DUCE algebraic mode assignments are again used, when identifying
the matrix d with the matrix a, applying the special assignment op-
erator :=: in a separate GENTRAN command. The latter command
is internally expanded into separate GENTRAN commands for each
entry assignment. By using the pair (DELAYOPTS, MAKEOPTS) one block
of straigt line code is constructed and optimized. It consists of two
sets of assignments, one for the entries of the matrix a and another
for the entries of the matrix d. The presented output shows that both
matrices are indeed identical.

MATRIX a(4,4);

DELAYDECS$
GENTRAN DECLARE <<a(4,4),d(4,4),b,c:real>>$
DELAYOPTS$

FOR i:=1:4 DO FOR j:=1:4 DO << a(i,j):=(i+j)*(b+c)+ixb+j*c;
GENTRAN a(i,j)::=:a(i,j)>>$
GENTRAN d:=:a$

MAKEOPTS$
MAKEDECS$

REAL B,C,G56,G54,G57,G55,A(4,4),D(4,4)
A(1,1)=3.0%(B+C)

G56=5.0%C

A(1,2)=G56+4.0%B

G54=5.0%B

G57=7.0%C

A(1,3)=G57+G54

A(1,4)=6.0%B+9.0%C

A(2,1)=G54+4.0%c

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 98

A(2,2)=2.0%A(1,1)
G55=7.0*B
A(2,3)=G55+8.0*C
A(2,4)=2.0%A(1,2)
A(3,1)=G56+G55
A(3,2)=G57+8.0%*B
A(3,3)=3.0%A(1,1)
A(3,4)=10.0%B+11.0%C
A(4,1)=9.0%B+6.0*C
A(4,2)=2.0*%A(2,1)
A(4,3)=11.0%B+10.0*C
A(4,4)=4.0%A(1,1)
D(1,1)=A(1,1)
D(1,2)=A(1,2)
D(1,3)=A(1,3)
D(1,4)=A(1,4)
D(2,1)=A(2,1)
D(2,2)=A(2,2)
D(2,3)=A(2,3)
D(2,4)=A(2,4)
D(3,1)=A(3,1)
D(3,2)=A(3,2)
D(3,3)=A(3,3)
D(3,4)=A(3,4)
D(4,1)=A(4,1)
D(4,2)=A(4,2)
D(4,3)=A(4,3)
D(4,4)=A(4,4)

e Finally, and again only for illustrative purposes the fifth piece of code
is again executed in an almost identical manner. We omit the decla-
rations and replace the instruction GENTRAN d:=:a$ by the command
GENTRAN a:=:a$. Hence the matrix a is simply redefined. As stated in
section 7 redundant assignments — producing dead code, for instance
by copying previous assignments — are automatically removed. as
part of the optimization process. Therefore the optimized entry val-
ues of the matrix a are presented only once.

DELAYOPTS$
FOR i:=1:4 DO FOR j:=1:4 DO << a(i,j):=(i+j)*(b+c)+ixb+j*c;
GENTRAN a(i,j)::=:a(i,j)>>$
GENTRAN a:=:a$

MAKEQOPTS$

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 99

A(1,1)=3.0%(B+C)
G111=5.0%C
A(1,2)=G111+4.0%B
G109=5.0%B
G112=7.0%C
A(1,3)=G112+G109
A(1,4)=6.0%B+9.0*C
A(2,1)=G109+4.0%C
A(2,2)=2.0%A(1,1)
G110=7.0%B
A(2,3)=G110+8.0%C
A(2,4)=2.0%A(1,2)
A(3,1)=G111+G110
A(3,2)=G112+8.0%B
A(3,3)=3.0%A(1,1)
A(3,4)=10.0%B+11.0%C
A(4,1)=9.0%B+6.0%C
A(4,2)=2.0%A(2,1)
A(4,3)=11.0%B+10.0%C
A(4,4)=4.0%A(1,1)

Example 22

Let us now again look at the symmetric (3,3) matrix m, already used in
the examples 8 and 11. For completeness we begin by showing the entry
values. We generate optimized fortran77 code for the inverse mnv of m and
store it in a file, named inverse. code, using the function pair (GENTRANOUT,
GENTRANSHUT). Inside this pair we apply the pair (DELAYDECS, MAKEDECS).
The latter pair encloses in turn the pair (DELAYOPTS, MAKEOPTS). Inside these
innermost brackets four different sections of code can be distinguished. The
first section consists of three LITERAL commands, for inserting comment in
the target code. The second is formed by a double for-loop. Essential are the
applications of the GENTRAN functions tempvar and markvar for assigning
internal names to matrix entry values. These applications are very similar
to the approach, chosen in example 11. The third section is again formed
by LITERAL commands and the last orders the creation of the entries of the
inverse matrix mnv. Before introducing the file inverse.code we selected
S0 as initial cse name, using the function INAME, and turned ON the switches
ACINFO and DOUBLE.

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 100

Observe that directly after the MAKEOPTS instruction two sets of tables are
printed with information about the arithmetic complexity of the two blocks
of code, which are generated in the second and the last section. We activated
ACINFO to show this effect. The tables are printed as a side effect. The out-
put itself is directed to the file inverse.code. Looking at the contents of this
file, given below, shows three different kinds of internally generated names.
A number of S-names is created during the optimization of the first block of
straight line code, created with the second section. In this piece of code we
also notice T-names, generated by tempvar applications. The intial T char-
acter is the default internal GENTRAN selection for (temporarily needed)
names. And finally G-names, introduced by applications of gensym, during
the second optimization operation for reducing the arithmetic complexity of
the entries of mnv. Because the code splitting is internally performed, the
second SCOPE application is missing its INAME initialisation, thus leading
to the application of gensym. Observe as well that INAME can be used as a
separate facility as well.

OFF EXP$

MATRIX m(3,3),mnv(3,3)$
IN "matrix.M"$

m(1,1) := - ((j30y - j30z + 9*m30*p)*sin(qg3)
2 2
- 18*cos(qg2) *cos(g3)*m30*p - j10y - j30y - mlO*p
2
- 18*m30*p)
2 2
m(2,1) :=m(1,2) := - ((j30y - j30z + 9*m30*p)*sin(q3)
2 2

- 9*cos(q2) *cos(g3)*m30*xp - j30y - 9*m30%*p)

2

m(3,1) m(1,3) := - 9*sin(q2)*sin(q3)*m30*p

2 2 2
- ((j30y - j30z + 9#m30*p)*sin(q3) - j30y - 9*m30%*p)

m(2,2)

m(3,2)

m(2,3) =0

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 101

m(3,3)

2

1= j30x + 9*m30*p

INAME sO$
ON ACINFO,DOUBLES$

GENTRANOUT "inverse.code"$

DELAYDECS$

GENTRAN DECLARE <<mnv(3,3),p,m30,3j30y,j30z,q3,m10,92,j10y, j30x:real>>$

DELAYOPTS$
GENTRAN LITERAL "C",tab!*x," ", cr!*$
GENTRAN LITERAL "C",tab!*," -- Computation of relevant M-entries --",cr!*$
GENTRAN LITERAL "C",tab!x," ", cr!*$

FOR j:=1:3 DO FOR k:=j:3 DO
IF m(j,k) NEQ O THEN

<< s:=tempvar(’real); markvar s;
GENTRAN eval(s):=:m(j,k);
m(j,k) :=m(k,j):=s

>>$
GENTRAN LITERAL "C",tab!#*," ",cr!x*$
GENTRAN LITERAL "C",tab!*," -- Computation of the inverse of M --",cr!*$
GENTRAN LITERAL "C",tab!*," ",cr!*$

GENTRAN mnv:=:m"~(-1)$

MAKEQOPTS$

Number of operations in the input is:

Number
Number
Number
Number
Number
Number

Number

of
of
of
of
of
of

of

(+/-) operations 1 17
unary - operations 1 4
* operations : 30
integer ~ operations : 14
/ operations : 0

function applications : 9

operations after optimization is:

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 102

Number of (+/-) operations : 11
Number of unary - operations 01
Number of * operations : 12
Number of integer ~ operations 0
Number of / operations : 0
Number of function applications : 4

Number of operations in the input is:

Number of (+/-) operations : 20
Number of unary - operations : 4
Number of * operations : 45
Number of integer ~ operations : 20
Number of / operations : 9

Number of function applications : O

Number of operations after optimization is:

Number of (+/-) operations
Number of unary - operations
Number of * operations

4

2

11

Number of integer ~ operations : O
I

0

Number of / operations :
Number of function applications :

MAKEDECS$

GENTRANSHUT "inverse.code"$
The contents of the file inverse.code is:

DOUBLE PRECISION P,M30,J30Y,J30Z,Q3,M10,Q2,J10Y,J30X,S0,S7,85,34,
. S13,s811,T0,T3,T1,T2,T4,G153,G152,G151,G147,G155,G156,MNV(3,3)

C
C -- Computation of relevant M-entries --
C

S0=DSIN(Q3)

S7=PxP

S$5=87*M30

S4=35*DC0S (Q3) *DCOS (Q2)

S13=9.0D0*S5

S11=(S13+J30Y-J30Z) *S0*S0
T0=J30Y+J10Y+18.0DO* (54+S55) +S7*M10-511

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 103

T3=S13+J30Y-S11
T1=T3+9.0D0*S4
T2=-(S13*DSIN(Q2) *S0)
T4=S13+J30X

C
C -- Computation of the inverse of M --
C

G153=T2%T2

G152=T1%T1

G151=T0%*T4

G147=G151%T3- (G153*T3) - (G152%T4)
G155=T4/G147
MNV(1,1)=G155%T3
MNV(1,2)=-(G155%T1)
G156=T2/G147
MNV(1,3)=-(G156%T3)
MNV(2,1)=MNV(1,2)
MNV(2,2)=(G151-G153) /G147
MNV(2,3)=G156%T1
MNV(3,1)=MNV(1,3)

MNV (3,2)=MNV(2,3)

MNV (3,3)=(T0*T3-G152) /G147

Let us now repeat the generation process in a slightly different setting. We
leave out the comment generating instructions, thus creating only one block
of straight line code to be optimized. We choose for an S-name selection
based on tempvar applications and for T-names for cse’s. This time the
default use of gensym is not necessary.

The contents’ of both output files illustrate quotient optimization. All de-
nominators, being the determinant of the matrix m, are identical. The set
of rational entries of MNV contains the cse’s G155 (T45) and G156 (T46).

TEMPVARNAME!*:=’s$
TEMPVARNUM! * : =0$

INAME t0$

GENTRANOUT "inverse.code2"$
DELAYDECS$

GENTRAN DECLARE <<mnv(3,3),p,m30,j30y,j30z,q3,m10,92,j10y,j30x:real>>$
DELAYOPTS$

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 104

FOR j:=1:3 DO FOR k:=j:3 DO
IF m(j,k) NEQ O THEN
<< s:=tempvar (’real); markvar(s);
GENTRAN eval(s):=:m(j,k);
m(j,k) :=m(k,j):=s
>>$

GENTRAN mnv:=:m~(-1)$
MAKEOPTS$

Number of operations in the input is:

Number of (+/-) operations : 37
Number of unary - operations : 8
Number of * operations : 75
Number of integer ~ operations : 34
Number of / operations : 9

Number of function applications : 9

Number of operations after optimization is:

Number of (+/-) operations : 15
Number of unary - operations : 3
Number of * operations : 23
Number of integer ~ operations 0
Number of / operations : 4
Number of function applications : 4

MAKEDECS$

GENTRANSHUT "inverse.code2"$
The contents of the file inverse.code?2 is:

DOUBLE PRECISION P,M30,J30Y,J30Z,Q3,M10,Q2,J10Y,J30X,T9,T40,T32,
. T31,T49,T47,50,83,51,582,584,T39,T38,T36,T30,T45,T46,MNV(3,3)
T9=DSIN(Q3)

T40=P*P

T32=T40*M30

T31=T32*DC0S(Q3)*DCOS(Q2)

T49=9.0D0*T32

T47=(T49+J30Y-J30Z) *T9*T9
S0=J30Y+J10Y+18.0D0* (T31+T32) +T40*M10-T47

8 A COMBINED USE OF GENTRAN AND SCOPE 1.5 105

S$3=T49+J30Y-T47
S1=S3+9.0D0*T31
S2=-(T49*DSIN(Q2)*T9)
S4=T49+J30X

T39=32%S52

T38=51%S1

T36=50%S4
T30=T36%S3-(T39*S3) - (T38%S4)
T45=S4/T30
MNV(1,1)=T45*S3
MNV(1,2)=-(T45%S1)
T46=82/T30
MNV(1,3)=-(T46%S3)
MNV(2,1)=MNV(1,2)

MNV (2,2)=(T36-T39) /T30
MNV(2,3)=T46*S1
MNV(3,1)=MNV(1,3)

MNV (3,2)=MNV(2,3)

MNV (3,3)=(S0*33-T38) /T30

A comparison between the arithmetic complexities given here and in example
11 shows that computing the entries of MNV(=M~") instead of the value of
the determinant of M, only requires 2 extra additions, 1 extra negation, 6
extra multilications and 4 extra divisions.

O
Other examples of this combined use of GENTRAN and SCOPE can be

found in [?, ?]. The symbolic-numeric strategy discussed in [?] also relies
on the ALGOPT facilities, which were introduced earlier.

9 SYMBOLIC MODE USE OF SCOPE 1.5 106

9 Symbolic Mode Use of SCOPE 1.5

Both the OPTIMIZE command and the ALGOPT function are transformed into
the same symbolic mode function, called SYMOPTIMIZE. It is this function,
which governs the optimization process as a whole, delivering the results of
an optimization run as a side effect, for instance by making it visible on a
screen or by storing it in a file. Using SYMOPTIMIZE is straighforward, once
the syntax for its five actual parameters is known. If we set ON INTERN a
SYMOPTIMIZE application will deliver a list, containing the correctly ordered
results of an optimization operation in the form of assignment statements in
prefix form in Lisp notation. The thus provided results can function as one
of the five actual parameters for SYMOPTIMIZE as well. This simple feature
helps avoiding file traffic when stepwise optimizing code and as illustrated
earlier in example 17 in section 5. Before illustrating that in example 23
we present the syntax of the actual parameters for SYMOPTIMIZE:

<SCOPE_application> == .- |
SYMOPTIMIZE(<ssetq list>, <infile list>, <outfile_name>, <cse_prefix>

<declaration_list>)

9 SYMBOLIC MODE USE OF SCOPE 1.5 107

<ssetq_list>
<ssetq-seq>
<ssetq-_stat>

<lhs_id>
<subscripted_id>
<s_subscript_seq>
<s_subscript>
<rhs>
<infile_list>
<infile_seq>
<infile_name>
<outfile_name>
<declaration_list>
<declaration_seq>
<declaration>
<lhs_id_seq>

(<ssetq_seq>)

<ssetq-stat> [<ssetq-seq>]

(setq <lhsid> <rhs>) | (rsetq <lhs.id> <rhs>) |
(1setq <lhs.id> <rhs>) | (1rsetq <lhs.id> <rhs>)
<id> | <subscripted_id>

(<id> <s_subscript_seq>)

<s_subscript> [<s_subscript_seq>|

<integer> | <integer prefix_expression>
<prefix_expression>

(<infile_seq>)

<infile_name> | <infile_seq>]

<string_id>

<string_id>

(<declaration_seq>)

<declaration> <declaration_seq>

(<type> <lhs_id_seq>)

<lhs_id> <lhs_id_seq>

The above given syntax requires some explanation:

e The presented ssetq syntax is incomplete.

The prefix equivalent of

any object, introduced in subsection 3.1 and of any a_object, defined
in subsection 3.2, is accepted as ssetq item. Such prefix equivalents
can be obtained quite easily by using the function show:

SYMBOLIC PROCEDURE show u; prettyprint u$
SYMBOLIC OPERATOR show$

The explicit presentation of a subset of the syntax rules for ssetq is
given to suggest that local simplification in symbolic mode can be
brought in easily by using the assignment operators lsetq, lrsetq
and rsetq. The algebraic mode equivalent of these operators is ::=,
::=: and :=:, respectively. Their effect on simplification is discussed
in subsection 2.4 and already shown in a number of examples. In
addition it is worth noting that any (sub)expression in a lhs_id or a
rhs may contain any number of calls to eval. These calls lead to
simplification of their arguments, prior to optimization. Details about
the use of eval are presented in the GENTRAN manual [?].

e Since we operate in symbolic mode the last four formal parameters

have possibly to be replaced by quoted actual parameters.

This is

illustrated in example 23.

9 SYMBOLIC MODE USE OF SCOPE 1.5 108

e The infile_seq consists of file names in string notation. The contents’ of
such input files may contain any form of infix input, obeying the syntax
rules for objects and/or a_objects, as introduced in the subsections 3.1
and 3.2, respectively.

e The single output file name outfile_name ought to be given in string
notation as well. The outfile_name is properly closed. The default out-
put is REDUCE infix in an ON NAT fashion. Alternatives are discussed
above: ON AGAIN or OFF NAT, both leading to re-readable output, or
an application of OPTLANG for a non nil argument.

e The declaration list presents declarations in prefix notation. The list
is used to initialize the symbol table prior to optimization. This in-
formation is used for dynamically typing the result of an optimization
process. In addition it is used to determine wether subscripted names
denote array elements or a function call. The latter is replaced by a
cse name in the presented output, whereas the former is not.

e The five parameters of SYMOPTIMIZE correspondent with optional ex-
tensions of the OPTIMIZE command. When part of these options re-
mains unused, nil has to taken as value for the corresponding actual
parameters.

We illustrate the symbolic mode variant of the OPTIMIZE command by re-
peating example 17 from section 5, albeit in a modified setting.

Example 23

The script explains itself.

LISP$

ON ACINFO,INPUTC,INTERN,AGAINS$

prettyprint (prefixlist:=SYMOPTIMIZE(nil,’ ("f1" "£2"),nil,’c,nil))$

2
2 (x +y 8 2 2
2x(sin(x) - cos(e) + 3xcos(x)) *(x + y) + 4xy + 4xy

2 x +y) 2 3
e2 := (4x(sin(x) - cos(e) + 2xcos(x)) *(x + y)

9 SYMBOLIC MODE USE OF SCOPE 1.5
2 2
+ (4*xx - 4*y) - 6%x)/(8*x + 3%y - 2%x)

Number of operations in the input is:
Number of (+/-) operations : 16
Number of unary - operations : 0
Number of * operations : 16
Number of integer ~ operations : 11
Number of / operations 12
Number of function applications : 8
Number of operations after optimization is:
Number of (+/-) operations : 16
Number of unary - operations 0
Number of * operations : 16
Number of integer ~ operations : 6
Number of / operations : 2
Number of function applications : 4
((setq gsym c23)

(setq cses (plus c18 c10 ¢20 c8 c6 c14))

(setq c14 (plus x y))

(setq c6 (expt cl4 2))

(setq c8 (cos x))

(setq c20 (plus (expt (sin x) 2) (minus (cos (expt e c6)))))

(setq c10 (plus (times 3 x) (times 2 y)))

(setq el

(quotient
(plus
(times 4 y)

(times 4 (expt y 2))
(times 2 c6 (expt (plus c20 (times 3 c8)) 8)))

c10))

(setq c18 (expt x 2))
(setq e2

(quotient

(plus

(times 4 c18)

(minus (times 2 c10))

(times 4 c6 c14 (expt (plus c20 (times 2 c8)) 2)))
(plus (times 8 c18) (minus (times 2 x)) (times 3 y)))))

109

9 SYMBOLIC MODE USE OF SCOPE 1.5 110

OFF INTERN,AGAIN,PERIOD$
ON DOUBLE,FORT$

SYMOPTIMIZE(prefixlist,’("£3"), *"f7",’d,’ ((real el e2 e3 x y)))$

gsym := c23
cses := c18 + c10 + c20 + c8 + c6 + cl14
cl4d :=x +y
2
c6 := cl4d
c8 := cos(x)
2 c6
c20 := sin(x) - cos(e)
cl0 := 3%x + 2%y
2 8
4xy + 4*xy + 2%c6x(c20 + 3xc8)
el o o
cl10
2
cl8 := x
2
4*%c18 - 2*xcl10 + 4*c6*cl14*(c20 + 2*c8)
€2 1= -
8*%cl8 - 2*x + 3xy
2
(x +y) 2 2
4xsin(cos(e)) + sin(x + y) + (4*xx - x + 2%y)
e3 = ———— -

3xy + f(x,g(- cos(x)))
Number of operations in the input is:

Number of (+/-) operations : 23
Number of unary - operations 01

9 SYMBOLIC MODE USE OF SCOPE 1.5 111

Number
Number
Number
Number

Number

Number
Number
Number
Number
Number
Number

of * operations : 20
of integer ~ operations : 9
of / operations : 3

of function applications : 11

of operations after optimization is:
of (+/-) operations : 15

of unary - operations 01

of * operations 1 24

of integer ~ operations 0

of / operations : 3

of function applications : 8

The contents of the output file £7 is:

DOUBLE PRECISION X,Y,D19,D16,C8,D1,D2,C20,D29,C10,D6,D38,D37,D31,

. E1,C18,D9,D32,D27,D30,E2,D20,E3

D19=X+Y

D16=D19*D19

€8=DC0S (X)

D1=DSIN(X)

D2=DCOS (DEXP (D16))

C20=D1*D1-D2

D29=2x%Y

C10=D29+3%X

D6=C20+3%C8

D38=D6%D6

D37=D38*D38

D31=4x*Y
E1=(D31+D31%Y+2.0D0*D16*D37*D37) /C10
C18=X*X

D9=C20+2xC8

D32=4x%C18

D27=D32-X

D30=3x*Y

E2=(D32-(2.0D0*C10)+4 .0D0*D9*D9*D19%D16) / (D30+2.0D0*D27)
D20=D29+D27
E3=(4.0D0*DSIN(D2)+DSIN(D19)+D20%D20) / (D30+F (X,G(-C8)))

O

We especially designed these symbolic mode facilities for our joint research
with Delft Hydraulics concerning code generation for an incompressible

9 SYMBOLIC MODE USE OF SCOPE 1.5 112

Navier-Stokes problem [?].

A final remark: The ON PREFIX mode of operation, in both algebraic and
symbolic mode causes the results of a SCOPE application to be presented in
the form of an association list, called Prefixlist. The pairs are formed by
lhs_id’s and rhs values in prefixform. This lisp S-expression can be used to
create an alternative version of the optimization results, in whatever target
language the user prefers to choose.

Example 24

We show the ON PREFIX effect. When switching to symbolic mode (com-
mand 5) we can again obtain the output, assigned as value to the global
identifer prefixlist. The ON PREFIX facility allows storage in a file for
later use. When working in symbolic mode it is of course possible to apply
ON INTERN in stead and to remove the setq extensions from the provided
output value, if desired.

REDUCE 3.6, 15-Jul-95 ...
1: LOAD_PACKAGE nscope$

2: OPTIMIZE a:=b+c*sin(x), d:=c*sin(x)*cos(y);

g7 := sin(x)*c
a:=grl+b
d := g7*cos(y)

3: ON PREFIX$
4: input 2;

Prefixlist:=
((g3 times (sin x) c) (a plus g3 b) (d times g3 (cos y)))

5: LISP$

6: prettyprint prefixlist$
((g3 times (sin x) c) (a plus g3 b) (d times g3 (cos y)))

7: caar prefixlist;
g3

7: cdar prefixlist;

9 SYMBOLIC MODE USE OF SCOPE 1.5 113

(times (sin x) c)

9: BYE;

10 A SYNTAX SUMMARY OF SCOPE 1.5 114

10 A Syntax Summary of SCOPE 1.5

REDUCE is extended with some commands, designed to apply the facil-
ities offered by SCOPE in a flexible way. The syntactical rules, defining
how to activate SCOPE in both algebraic and symbolic mode, are given
in subsection 10.1. A short overview of the set of additional functions is
given in subsection 10.2 and the relevant switches are again presented in
subsection 10.3.

10.1 SCOPE’s Toplevel Commands

We assume the syntax of id’s, integer’s and the like to be already known.
Hence we do not present an exhaustive description of the rules.

<REDUCE_command> := --- | <SCOPE_application>
<GSTRUCTR.application> | <GHORNER_application> |
<SCOPE_application> ::= <OPTIMIZE command> |

<ALGOPT application> | <SYMOPTIMIZE application>

<OPTIMIZE command> :=
OPTIMIZE <object_seq> [IN <file_id_seq>] [OUT <file_id>]
[INAME <cse_prefix>] [DECLARE <declaration_group>| |
OPTIMIZE [<object_seq>] IN <file_id_seq> [OUT <file_id>|
[INAME <cse_prefix>] [DECLARE <declaration_group>]

<ALGOPT application> ::=
ALGOPT(<a_object_list>[,<string_id_list>][,<cse_prefix>]) |
ALGOPT([<a_object_list>,| <string_id_list>[,<cse_prefix>])

<SYMOPTIMIZE application> ::=
SYMOPTIMIZE(<ssetq list>, <infile_list>, <outfile_name>, <cse_prefix>,
<declaration_list>)

10 A SYNTAX SUMMARY OF SCOPE 1.5 115

<GSTRUCTR.application> := GSTRUCTR <stat_group> [NAME <cse_prefix>]
<stat_group> = L <statlist> >

<stat_list> n= <gstat> [; <stat_list>]

<gstat> = <name> := < expression> | <matrixid>
<GHORHER _application> ::= GHORNER <stat_group> [VORDER <id seq>]

<id_seq> n= <id>[,<id-seq>]

10 A SYNTAX SUMMARY OF SCOPE 1.5 116

10 A SYNTAX SUMMARY OF SCOPE 1.5 117

<object_seq>
<object>
<stat>

<assignment operator>

<alglist>

<eq-seq>
<alglist_production>
<name>
<a_subscript_seq>
<a_subscript>
<cse_prefix>

<a_object_list>
<a_object_seq>
<a_object>

<function_application>

<arg_list>
<arg_seq>
<arg>
<arg_list_name>

<file_id _seq>
<file_id>
<string_id_list>
<string_id_seq>
<string_id>

<declaration_group>
<declaration_list>
<declaration>
<range_list>
<range>

<id.list>

<type>

<ssetq_list>
<ssetq-seq>
<ssetq-stat>

<object>[,<object_seq>]

<stat> | <alglist> | <alglist_production>
<name> <assignment operator> <expression>
= | n= | u= | o=

{<eqseq>}

<name> = <expression>[,<eq-seq>|

<name> | <function_application>

<id> | <id> (<a_subscript_seq>)
<a_subscript>[,<a_subscript_seq>|

<integer> | <integer infix_expression>
<id>
<a_object> | {<a_object>[,<a_object_seq>]}

<a_object>[,<a_object_seq>]
<id> | «<alglist> | <alglist_production> |
{<a_object>}

ALGSTRUCTR (<arg_list> [, <cse_prefix>]) |
ALGHORNER (<arg list> [,{<id_seq>}]) |
<arg list_.name> | {<argseq>}
<arg>[,<arg_seq>]

<matrix_id> | <name>=<expression>
<id>

<file_.id> [,<file_id_seq>|

<id> | <string_id>

<string_id> | {<string_id_seq>}
<string_id> [,<string_id_seq>]
"<id>" | "<id> . <f_extension>"

<declaration> | <« <declaration_list> >
<declaration>[; <declaration_list>|

<range_list>: IMPLICIT <type> | <id.list>:<type>
<range>|,<range_list>]

<id> | <id> — <id>

<id>[,<id list>]

integer | real | complex | real*8 | complex*16

(<ssetq_seq>)
<ssetq_stat> [<ssetq_seq>]
(setq <lhs.id> <rhs>) | (rsetq <lhsid> <rhs>) |

(lsetq <lhs_id> <rhs>) | (lrsetq <lhs.id> <rhs>)

10 A SYNTAX SUMMARY OF SCOPE 1.5 118

<lhs_id> n= <id> | <subscripted_id>
<subscripted_id> = (<id> <s_subscript_seq>)
<s_subscript_seq> = <s_subscript> [<s_subscript_seq>]
<s_subscript> = <integer> | <integer prefix_expression>

<rhs> <prefix_expression>

<infile_list> (<infile_seq>)

<infile_seq> = <infile name> [<infile_seq>]
<infile_name> <string_id>

<outfile_name> <string_id>

<declaration_list> (<declaration_seq>)
<declaration_seq> <declaration> <declaration_seq>
<declaration> n= (<type> <lhsid seq>)
<lhs_id_seq> n= <lhsid> <lhs_.id_seq>

10.2 Additional SCOPE-functions

Fifteen additional functions can be used. We shortly summarize their name
and use:

’ Name(s) Introduced in \ See the examples:
SCOPE_SWITCHES 3 1
SETLENGTH, RESETLENGTH 3.1 2, 5, 12 and 13
ARESULTS, RESTORABLES, ARESTORE, RESTOREALL 3.1 9, 12 and 15
OPTLANG 6 18
VECTORCODE, VCLEAR 7 20
DELAYDECS, MAKEDECS, DELAYOPTS, MAKEOPTS 8 21 and 22
INAME 8 22

10.3 The relevant REDUCE, GENTRAN and SCOPE switches

We also shortly summarize the use of the switches, which were introduced
in section 3 in example 1:

10 A SYNTAX SUMMARY OF SCOPE 1.5

Name Origin ‘ Illustrated in the examples:
ACINFO SCOPE 8, 11, 22 and 23

AGAIN SCOPE 17 and 23

DOUBLE GENTRAN | 23

EVALLHSEQP | REDUCE 11

EXP REDUCE 8, 13, 16 and 22

FORT REDUCE 4, 6, 8, 11, 20 and 23
FTCH SCOPE 4 and 5

119

10 A SYNTAX SUMMARY OF SCOPE 1.5

’ Name ‘ Origin ‘ Tllustrated in the examples:
GENTRANOPT | GENTRAN | 21

INPUTC SCOPE 3, 6, 7, 13, 17 and 23
INTERN SCOPE 23

NAT REDUCE 8 and 17

PERIOD REDUCE 4

PREFIX SCOPE 24

PRIALL SCOPE 2

PRIMAT SCOPE 13

POUNDBF REDUCE 19

ROUNDED REDUCE 7 and 22

SIDREL SCOPE 13

VECTORC SCOPE 20

120

11 SCOPE 1.5 INSTALLATION GUIDE 121

11 SCOPE 1.5 Installation Guide

SCOPE 1.5 is easily installed. The usual code compilation facilities of RE-
DUCE can be applied. In view of the frequent interaction between SCOPE
and GENTRAN a compiled version of GENTRAN is required during the
creation of the load module for SCOPE 1.5. The compilation process itself
is vizualized below.

faslout "“infhvh/mkscope/scope_15";

lisp in ""infhvh/mkscope/cosmac.red"$
lisp in "“infhvh/mkscope/codctl.red"$
lisp in "“infhvh/mkscope/codmat.red"$
lisp in "“infhvh/mkscope/codopt.red"$
lisp in "“infhvh/mkscope/codadl.red"$
lisp in "“infhvh/mkscope/codad2.red"$
lisp in "“infhvh/mkscope/coddec.red"$
lisp in "“infhvh/mkscope/codpri.red"$
lisp in "“infhvh/mkscope/codgen.red"$
lisp in "“infhvh/mkscope/codhrn.red"$
lisp in "“infhvh/mkscope/codstr.red"$
lisp in "“infhvh/mkscope/coddom.red"$
%lisp in "“infhvh/mkscope/apatch.red"$
algebraic;

faslend ;
end;

The subdirectory mkscope in the author’s directory system contains the files
with the source code of SCOPE 1.5. The order in which the files are read
in is irrelevant except the first and the last. The file cosmac.red contains
one module, named cosmac, which consists of a set of smacro procedures,
designed to simplify access to the lower levels of the expression data base,
employed during optimization. These smacro’s are used in all other code sec-
tions. The last file in optional and usually executed to include new patches
into a recompilable version of the package. Once it is stored in the fasl
directory of the local REDUCE system it is available as a load_package.

In short, the files contain the following code sections:

e cosmac.red contains the module cosmac, consisting of smacro proce-

11 SCOPE 1.5 INSTALLATION GUIDE 122

dures, allowing access to the expression data base.

e codctl.red consists of the three modules codctl, restore and minlenght.
The first is a large module, containing the optimization process man-
aging facilities. The second module is added to regulate the interplay
with the REDUCE simplifier, when entering optimizer output in alge-
braic mode using functions like ARESULTS. The last module serves to
vary the minimal length of cse’s using SETLENGTH and RESETLENGTH.

e codmat.red contains the module codmat, definig the parsing process
and the expression data base setup and access facilities.

e codopt.red’s content is formed by the module codopt. It is the ker-
nel of the optimization process, the implementation of the extended
Breuer algorithm.

e codadl.red contains the module codadl, formed by additional facil-
ities for improving the lay-out of the overall result, for information
migration between different sections of the expression data base and
for the application of the distributive law to remodel and compactify
(sub)expression structure at any level.

e codad2.red contains the module codad2. This module defines five
different possible activities during the optimization process. The first
four regulate the so called finishing touch. The last one is a new
section, defining how to optimize rational forms as part of the overall
optimization process.

e coddec.red covers the declaration facilities, presented in section 6,
collected in the module coddec and based on chapter 6 of [?]. The
symbol table setup of GENTRAN is used.

e codpri.red is also formed by one module, called codpri. It covers
all printing facilities. The first section is applied when the switch
PRIMAT is turned ON. The latter is used to produce an internal list of
pairs, consisting of the left hand side and the right hand side of as-
signment statements in prefix notation, and defining the output of the
optimization process in sequential order. This prefix list is delivered
to GENTRAN or REDUCE to make the results visible in the user
prefered form. The intial version of this list, created directly after the
optimization process, is improved using a collection of functions, also
grouped together in the module codpri. These improvements may
for instance be necessary to remove temporarily introduced names,
internally employed as a result of a data dependency analysis.

11 SCOPE 1.5 INSTALLATION GUIDE 123

e codgen.red consists of the module codgen. The interface between
GENTRAN and SCOPE 1.5, introduced in section 8 of this manual
is defined in this module.

e codhrn.red is formed by the module ghorner. It defines the facilities,
presented in section 4.3 of this manual.

e codstr.red contains the module gstructr. This module defines the
possibilities for expression structure recognition, as presented in sec-
tion 4.2 of this manual.

e coddom.red finally, consists of one module, called coddom. It covers
additional coefficient domain functions, needed to make the extended
Breuere algorithm and the additional functions, collected in the mod-
ules codadl and codad2 for instance, applicable for (multiple presi-
cion) floating point coefficients.

A few additional remarks:

e GENTRAN plays an important role when creating declarations and
output. The package is automatically loaded when executing one of the
first instructions in the module codctl. Hence it may be necessary
to look critically to the load instruction in codctl before installing
SCOPE 1.5. By changing this load instruction we easily created a
fortran90 compatable SCOPE version [?]. At present it is only
available for our own internal and experimental use.

e We believe the code to be almost version independent. Over the
past years all uses of nil have been critically reviewed. However the
coddom module may require version based maintenance when installing

SCOPE 1.5.

e The present size of the source code is given in the table below. Com-
ment is included in these figures

11 SCOPE 1.5 INSTALLATION GUIDE

’ File naam ‘ number of lines

‘ number of characters

cosmac

codpri.
codgen.
codhrn.
codstr.
coddom.

.red
codctl.
codmat.
codopt.
codadl.
codad2.
coddec.

red
red
red
red
red
red
red
red
red
red
red

172
1439
1488
1243

801
1314

928
1371

214

752

308

204

4761
61466
72733
68809
39175
99217
41069
62600

9120
30549
11199

6638

124

e The modules ghorner and gstructr can be left out without harming
the other facilities, presented in this manual.

REFERENCES 125

References

Index

ACINFO switch, 10, 28, 38, 99, 119

AGAIN switch, 10, 64, 67, 74, 108,
119

ALGOPT application, 36

DECLARE option, 72, 115

DOUBLE switch, 10, 73, 74, 99, 110,
119

EVALLHSEQP switch, 10, 35, 37, 119

EXP switch, 10, 28, 42, 119

FORT switch, 10, 17, 20, 28, 38,
110, 119

FTCH switch, 10, 17-19, 119

GENTRANOPT switch, 8, 10, 94, 95,
120

GENTRANSEG switch, 8

IMPLICIT type, 72, 74, 116

INAME option, 11, 64, 72, 115

INPUTC switch, 10, 17, 20, 65, 108,
120

INPUT switch, 43

INTERN switch, 10, 106, 108, 112,
120

IN option, 64, 65, 72, 115

NAT switch, 10, 30, 67, 108, 120

OPTIMIZE command, 11

OUT option, 31, 64, 72, 115

PERIOD switch, 10, 17, 28, 38, 120

PREFIX switch, 10, 112, 120

PRIALL switch, 10, 13, 120

PRIMAT switch, 10, 43, 120

ROUNDBF switch, 10, 77, 80, 120

ROUNDED switch, 10, 20, 63, 73, 120

SIDREL switch, 10, 35, 48, 120

VECTORC switch, 10, 86, 87, 90, 120

complex*16 type, 72, 116

complex type, 72, 74, 80, 116

126

double precision type, 74
double type, 74

float type, 74

integer type, 72, 74, 116
int type, 74

realx*8 type, 72, 74, 116
real type, 72, 74, 116
scope90, 76

addition chain algorithm, 13
anti dependency, 84
arithmetic complexity, 2

bigfloats, 77
Breuer’s Algorithm, 4

coefficient arithmetic, 77
cse (common subexpression), 1, 6

data dependency analysis, 84
dead code, 84

defined identifiers, 84
dynamic typing, 73

error analysis, 2
extended Breuer algorithm, 5

file management, 64
finishing touch, 4
flow dependency, 84

GENTRAN;, 3

GENTRAN
code generation process, 8
code segmentation, 8
DECLARE statement, 8, 9, 72

GENTRAN function
GENTRANOUT, 99, 103

INDEX

GENTRANSHUT, 99
lrsetq, 108, 116
lsetq, 108, 116
markvar, 101
rsetq, 108, 116
tempvar, 101
GENTRAN identifier
TEMPVARNAME*, 103
TEMPVARNUMx*, 103
GENTRAN’s DECLARE statement,
99
GENTRAN’s LITERAL statement,
99

Horner-rules, 59
machine precision, 77

optimization, 1

optimization strategy, 4
optimizing compilers, 1

output definition preservation, 86

rational exponents, 19

REDUCE function
ENDSTAT-type, 51, 52
gensym, 11, 99
GHORNER, 59, 114
GSTRUCTR, 55, 56, 114
NORMAL-type, 51, 52
PRECISION, 77
PRINT_PRECISION, 77
PSOPFN-type, 51, 52
structr, 55

SCOPE
example, 10, 13, 17-20, 28, 32,
35, 37, 39, 42, 52, 56, 60,
65, 74, 77, 87, 94, 99, 108,
112

127

DECLARE facility, 9, 72, 115
SCOPE function
ALGHORNER, 59, 116
ALGOPT, 34, 114
ALGSTRUCTR, 55, 56, 116
ARESTORE, 32, 34, 57, 118
ARESULTS, 31, 34, 118
DELAYDECS, 94, 95, 118
DELAYOPTS, 94, 95, 118
INAME, 99, 103, 118
MAKEDECS, 94, 95, 118
MAKEOPTS, 94, 95, 118
OPTIMIZE, 114
OPTLANG, 72, 74, 108, 118
RESETLENGTH, 12, 17, 118
RESTORABLES, 31, 34, 57, 118
RESTOREALL, 32, 34, 40, 118
SCOPE_SWITCHES, 10, 118
SETLENGTH, 11, 17, 19, 42, 48,
118
SYMOPTIMIZE, 106, 114
VCLEAR, 87, 90, 118
VECTORCODE, 86, 90, 118
SCOPE target language
c, 72
£90, 72
fortran77, 72
fortran90, 72
nil, 72
pascal, 72
ratfor, 72

used identifiers, 84

vector code, 2

