
The Standard Lisp Report

Jed Marti
A. C. Hearn
M. L. Griss

C. Griss

1 Introduction

Although the programming language LISP was first formulated in 1960 [7], a
widely accepted standard has never appeared. As a result, various dialects of
LISP were produced [1, 2, 6, 10, 8, 9] in some cases several on the same machine!
Consequently, a user often faces considerable difficulty in moving programs from
one system to another. In addition, it is difficult to write and use programs
which depend on the structure of the source code such as translators, editors
and cross-reference programs.

In 1969, a model for such a standard was produced [4] as part of a general effort
to make a large LISP based algebraic manipulation program, REDUCE [5], as
portable as possible. The goal of this work was to define a uniform subset of
LISP 1.5 and its variants so that programs written in this subset could run on
any reasonable LISP system.

In the intervening years, two deficiencies in the approach taken in Ref. [4] have
emerged. First in order to be as general as possible, the specific semantics and
values of several key functions were left undefined. Consequently, programs
built on this subset could not make any assumptions about the form of the
values of such functions. The second deficiency related to the proposed method
of implementation of this language. The model considered in effect two versions
of LISP on any given machine, namely Standard LISP and the LISP of the
host machine (which we shall refer to as Target LISP). This meant that if any
definition was stored in interpretive form, it would vary from implementation
to implementation, and consequently one could not write programs in Standard
LISP which needed to assume any knowledge about the structure of such forms.
This deficiency became apparent during recent work on the development of a
portable compiler for LISP [3]. Clearly a compiler has to know precisely the
structure of its source code; we concluded that the appropriate source was
Standard LISP and not Target LISP.

With these thoughts in mind we decided to attempt again a definition of Stan-
dard LISP. However, our approach this time is more aggressive. In this docu-
ment we define a standard for a reasonably large subset of LISP with as precise

1

2 1 INTRODUCTION

as possible a statement about the semantics of each function. Secondly, we
now require that the target machine interpreter be modified or written to sup-
port this standard, rather than mapping Standard LISP onto Target LISP as
previously.

We have spent countless hours in discussion over many of the definitions given in
this report. We have also drawn on the help and advice of a lot of friends whose
names are given in the Acknowledgements. Wherever possible, we have used the
definition of a function as given in the LISP 1.5 Programmer’s Manual [7] and
have only deviated where we felt it desirable in the light of LISP programming
experience since that time. In particular, we have given considerable thought
to the question of variable bindings and the definition of the evaluator functions
EVAL and APPLY. We have also abandoned the previous definition of LISP
arrays in favor of the more accepted idea of a vector which most modern LISP
systems support. These are the places where we have strayed furthest from the
conventional definitions, but we feel that the consistency which results from our
approach is worth the redefinition.

We have avoided entirely in this report problems which arise from environment
passing, such as those represented by the FUNARG problem. We do not nec-
essarily exclude these considerations from our standard, but in this report have
decided to avoid the controversy which they create. The semantic differences
between compiled and interpreted functions is the topic of another paper [3].
Only functions which affect the compiler in a general way make reference to it.

This document is not intended as an introduction to LISP rather it is assumed
that the reader is already familiar with some version. The document is thus
intended as an arbiter of the syntax and semantics of Standard LISP. However,
since it is not intended as an implementation description, we deliberately leave
unspecified many of the details on which an actual implementation depends.
For example, while we assume the existence of a symbol table for atoms (the
”object list” in LISP terminology), we do not specify its structure, since conven-
tional LISP programming does not require this information. Our ultimate goal,
however, is to remedy this by defining an interpreter for Standard LISP which
is sufficiently complete that its implementation on any given computer will be
straightforward and precise. At that time, we shall produce an implementation
level specification for Standard LISP which will extend the description of the
primitive functions defined herein by introducing a new set of lower level prim-
itive functions in which the structure of the symbol table, heap and so on may
be defined.

The plan of this chapter is as follows. In Section 2 we describe the various
data types used in Standard LISP. In Section 3, a description of all Standard
LISP functions is presented, organized by type. These functions are defined in
an RLISP syntax which is easier to read than LISP S-expressions. Section 4
describes global variables which control the operation of Standard LISP.

3

2 Preliminaries

2.1 Primitive Data Types

integer Integers are also called ”fixed” numbers. The magnitude of an integer
is unrestricted. Integers in the LISP input stream are recognized by the
grammar:

<digit> ::= 0|1|2|3|4|5|6|7|8|9
<unsigned-integer> ::= <digit>|<unsigned-integer><digit>
<integer> ::= <unsigned-integer> |

+<unsigned-integer> |
—<unsigned-integer>

floating - Any floating point number. The precision of floating point num-
bers is determined solely by the implementation. In BNF floating point
numbers are recognized by the grammar:

<base> ::= <unsigned-integer>.|.<unsigned-integer>|
<unsigned-integer>.<unsigned-integer>
<unsigned-floating> ::= <base>|
<base>E<unsigned-integer>|
<base>E-<unsigned-integer>|
<base>E+<unsigned-integer>

<floating> ::= <unsigned-floating>|
+<unsigned-floating>|-<unsigned-floating>

id An identifier is a string of characters which may have the following items
associated with it.

print name The characters of the identifier.
flags An identifier may be tagged with a flag. Access is by the FLAG,

REMFLAG, and FLAGP functions defined in section 3.4 on page 13.
properties An identifier may have an indicator-value pair associated

with it. Access is by the PUT, GET, and REMPROP functions
defined in section 3.4 on page 13.

values/functions An identifier may have a value associated with it. Ac-
cess to values is by SET and SETQ defined in section 3.6 on page 16.
The method by which the value is attached to the identifier is known
as the binding type, being one of LOCAL, GLOBAL, or FLUID.
Access to the binding type is by the GLOBAL, GLOBALP, FLUID,
FLUIDP, and UNFLUID functions.
An identifier may have a function or macro associated with it. Ac-
cess is by the PUTD, GETD, and REMD functions (see “Function
Definition”, section 3.5, on page 14). An identifier may not have
both a function and a value associated with it.

OBLIST entry An identifier may be entered and removed from a struc-
ture called the OBLIST. Its presence on the OBLIST does not di-
rectly affect the other properties. Access to the OBLIST is by the
INTERN, REMOB, and READ functions.

4 2 PRELIMINARIES

The maximum length of a Standard LISP identifier is 24 characters (ex-
cluding occurrences of the escape character !) but an implementation may
allow more. Special characters (digits in the first position and punctua-
tion) must be prefixed with an escape character, an ! in Standard LISP.
In BNF identifiers are recognized by the grammar:

<special-character> ::= !<any-character>
<alphabetic> ::=

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<lead-character> ::= <special-character>|<alphabetic>
<regular-character> ::= <lead-character>|<digit>
<last-part> ::= <regular-character> |

<last-part><regular-character>
<id> ::= <lead-character>|<lead-character><last-part>

Note: Using lower case letters in identifiers may cause portability prob-
lems. Lower case letters are automatically converted to upper case when
the !*RAISE flag is T.

string A set of characters enclosed in double quotes as in ”THIS IS A STRING”.
A quote is included by doubling it as in ”HE SAID, ””LISP”””. The max-
imum size of strings is 80 characters but an implementation may allow
more. Strings are not part of the OBLIST and are considered constants
like numbers, vectors, and function-pointers.

dotted-pair A primitive structure which has a left and right part. A notation
called dot-notation is used for dotted pairs and takes the form:

(<left-part> . <right-part>)

The <left-part> is known as the CAR portion and the <right-part> as
the CDR portion. The left and right parts may be of any type. Spaces
are used to resolve ambiguity with floating point numbers.

vector A primitive uniform structure in which an integer index is used to access
random values in the structure. The individual elements of a vector may
be of any type. Access to vectors is restricted to functions defined in
“Vectors” section 3.9 on page 21. A notation for vectors, vector-notation,
has the elements of a vector surrounded by square brackets1

<elements> ::= <any>|<any> <elements>
<vector> ::= [<elements>]

function-pointer An implementation may have functions which deal with spe-
cific data types other than those listed. The use of these entities is to be
avoided with the exception of a restricted use of the function-pointer, an
access method to compiled EXPRs and FEXPRs. A particular function-
pointer must remain valid throughout execution. Systems which change
the location of a function must use either an indirect reference or change
all occurrences of the associated value. There are two classes of use of

1Vector elements are not separated by commas as in the published version of this document.

2.2 Classes of Primitive Data Types 5

function-pointers, those which are supported by Standard LISP but are
not well defined, and those which are well defined.

Not well defined Function pointers may be displayed by the print func-
tions or expanded by EXPLODE. The value appears in the conven-
tion of the implementation site. The value is not defined in Standard
LISP. Function pointers may be created by COMPRESS in the for-
mat used for printing but the value used is not defined in Standard
LISP. Function pointers may be created by functions which deal with
compiled function loading. Again, the values created are not well de-
fined in Standard LISP.

Well defined The function pointer associated with an EXPR or FEXPR
may be retrieved by GETD and is valid as long as Standard LISP is
in execution. Function pointers may be stored using PUTD, PUT,
SETQ and the like or by being bound to variables. Function pointers
may be checked for equivalence by EQ. The value may be checked
for being a function pointer by the CODEP function.

2.2 Classes of Primitive Data Types

The classes of primitive types are a notational convenience for describing the
properties of functions.

boolean The set of global variables {T,NIL}, or their respective values, {T,
NIL}.

extra-boolean Any value in the system. Anything that is not NIL has the
boolean interpretation T.

ftype The class of definable function types. The set of ids {EXPR, FEXPR,
MACRO}.

number The set of {integer, floating}.
constant The set of {integer, floating, string, vector, function-pointer}. Con-

stants evaluate to themselves (see the definition of EVAL in “The Inter-
preter”, section 3.14 on page 32).

any The set of {integer, floating, string, id, dotted-pair, vector, function-
pointer}. An S-expression is another term for any. All Standard LISP
entities have some value unless an ERROR occurs during evaluation or
the function causes transfer of control (such as GO and RETURN).

atom The set {any}-{dotted-pair}.

2.3 Structures

Structures are entities created out of the primitive types by the use of dotted-
pairs. Lists are structures very commonly required as actual parameters to
functions. Where a list of homogeneous entities is required by a function this

6 2 PRELIMINARIES

class will be denoted by <xxx-list> where xxx is the name of a class of primi-
tives or structures. Thus a list of ids is an id-list, a list of integers an integer-list
and so on.

list A list is recursively defined as NIL or the dotted-pair (any . list). A spe-
cial notation called list-notation is used to represent lists. List-notation
eliminates extra parentheses and dots. The list (a . (b . (c . NIL))) in
list notation is (a b c). List-notation and dot-notation may be mixed as
in (a b . c) or (a (b . c) d) which are (a . (b . c)) and (a . ((b . c) . (d .
NIL))). In BNF lists are recognized by the grammar:

<left-part> ::= (| <left-part> <any>
<list> ::= <left-part>) | <left-part> . <any>)

Note: () is an alternate input representation of NIL.

alist An association list; each element of the list is a dotted-pair, the CAR
part being a key associated with the value in the CDR part.

cond-form A cond-form is a list of 2 element lists of the form:

(ANTECEDENT:any CONSEQUENT:any)

The first element will henceforth be known as the antecedent and the
second as the consequent. The antecedent must have a value. The conse-
quent may have a value or an occurrence of GO or RETURN as described
in the “Program Feature Functions”, section 3.7 on page 18.

lambda A LAMBDA expression which must have the form (in list notation):
(LAMBDA parameters body). “parameters” is a list of formal parame-
ters for “body” an S-expression to be evaluated. The semantics of the
evaluation are defined with the EVAL function (see “The Interpreter”,
section 3.14 on page 32).

function A LAMBDA expression or a function-pointer to a function. A func-
tion is always evaluated as an EVAL, SPREAD form.

2.4 Function Descriptions

Each function is provided with a prototypical header line. Each formal parame-
ter is given a name and suffixed with its allowed type. Lower case, italic tokens
are names of classes and upper case, bold face, tokens are parameter names
referred to in the definition. The type of the value returned by the function (if
any) is suffixed to the parameter list. If it is not commonly used the parameter
type may be a specific set enclosed in brackets {. . . }. For example:

PUTD(FNAME:id, TYPE:ftype, BODY:{lambda, function-pointer}):id

PUTD is a function with three parameters. The parameter FNAME is an id to
be the name of the function being defined. TYPE is the type of the function
being defined and BODY is a lambda expression or a function-pointer. PUTD
returns the name of the function being defined.

2.5 Function Types 7

Functions which accept formal parameter lists of arbitrary length have the type
class and parameter enclosed in square brackets indicating that zero or more
occurrences of that argument are permitted. For example:

AND([U:any]):extra-boolean

AND is a function which accepts zero or more arguments which may be of any
type.

2.5 Function Types

EVAL type functions are those which are invoked with evaluated arguments.
NOEVAL functions are invoked with unevaluated arguments. SPREAD type
functions have their arguments passed in one-to-one correspondence with their
formal parameters. NOSPREAD functions receive their arguments as a single
list. EVAL, SPREAD functions are associated with EXPRs and NOEVAL,
NOSPREAD functions with FEXPRs. EVAL, NOSPREAD and NOEVAL,
SPREAD functions can be simulated using NOEVAL, NOSPREAD functions
or MACROs.

EVAL, SPREAD type functions may have a maximum of 15 parameters. There
is no limit on the number of parameters a NOEVAL, NOSPREAD function or
MACRO may have.

In the context of the description of an EVAL, SPREAD function, then we speak
of the formal parameters we mean their actual values. However, in a NOEVAL,
NOSPREAD function it is the unevaluated actual parameters.

A third function type, the MACRO, implements functions which create S-
expressions based on actual parameters. When a macro invocation is encoun-
tered, the body of the macro, a lambda expression, is invoked as a NOEVAL,
NOSPREAD function with the macro’s invocation bound as a list to the macros
single formal parameter. When the macro has been evaluated the resulting S-
expression is reevaluated. The description of the EVAL and EXPAND functions
provide precise details.

2.6 Error and Warning Messages

Many functions detect errors. The description of such functions will include
these error conditions and suggested formats for display of the generated error
messages. A call on the ERROR function is implied but the error number is not
specified by Standard LISP. In some cases a warning message is sufficient. To
distinguish between errors and warnings, errors are prefixed with five asterisks
and warnings with only three.

Primitive functions check arguments that must be of a certain primitive type for
being of that type and display an error message if the argument is not correct.
The type mismatch error always takes the form:

8 3 FUNCTIONS

***** PARAMETER not TYPE for FN

Here PARAMETER is the unacceptable actual parameter, TYPE is the type
that PARAMETER was supposed to be. FN is the name of the function that
detected the error.

2.7 Comments

The character % signals the start of a comment, text to be ignored during
parsing. A comment is terminated by the end of the line it is on. The function
READCH must be able to read a comment one character at a time. Comments
are transparent to the function READ. % may occur as a character in identifiers
by preceding it with the escape character !.

3 Functions

3.1 Elementary Predicates

Functions in this section return T when the condition defined is met and NIL
when it is not. Defined are type checking functions and elementary comparisons.

ATOM(U:any):boolean eval, spread
Returns T if U is not a pair.
EXPR PROCEDURE ATOM(U);

NULL PAIRP U;

CODEP(U:any):boolean eval, spread
Returns T if U is a function-pointer.

CONSTANTP(U:any):boolean eval, spread
Returns T if U is a constant (a number, string, function-pointer, or
vector).
EXPR PROCEDURE CONSTANTP(U);

NULL OR(PAIRP U, IDP U);

EQ(U:any, V:any):boolean eval, spread
Returns T if U points to the same object as V. EQ is not a reliable
comparison between numeric arguments.

3.1 Elementary Predicates 9

EQN(U:any, V:any):boolean eval, spread
Returns T if U and V are EQ or if U and V are numbers and have
the same value and type.

EQUAL(U:any, V:any):boolean eval, spread
Returns T if U and V are the same. Dotted-pairs are compared
recursively to the bottom levels of their trees. Vectors must have
identical dimensions and EQUAL values in all positions. Strings
must have identical characters. Function pointers must have EQ
values. Other atoms must be EQN equal.

FIXP(U:any):boolean eval, spread
Returns T if U is an integer (a fixed number).

FLOATP(U:any):boolean eval, spread
Returns T if U is a floating point number.

IDP(U:any):boolean eval, spread
Returns T if U is an id.

MINUSP(U:any):boolean eval, spread
Returns T if U is a number and less than 0. If U is not a number or
is a positive number, NIL is returned.
EXPR PROCEDURE MINUSP(U);

IF NUMBERP U THEN LESSP(U, 0) ELSE NIL;

NULL(U:any):boolean eval, spread
Returns T if U is NIL.
EXPR PROCEDURE NULL(U);

U EQ NIL;

NUMBERP(U:any):boolean eval, spread
Returns T if U is a number (integer or floating).
EXPR PROCEDURE NUMBERP(U);

IF OR(FIXP U, FLOATP U) THEN T ELSE NIL;

10 3 FUNCTIONS

ONEP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 1 or 1.0. Returns NIL
otherwise. a

EXPR PROCEDURE ONEP(U);
OR(EQN(U, 1), EQN(U, 1.0));

aThe definition in the published report is incorrect as it does not return T for
U of 1.0.

PAIRP(U:any):boolean eval, spread
Returns T if U is a dotted-pair.

STRINGP(U:any):boolean eval, spread
Returns T if U is a string.

VECTORP(U:any):boolean eval, spread
Returns T if U is a vector.

ZEROP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 0 or 0.0. Returns NIL
otherwise.a

EXPR PROCEDURE ZEROP(U);
OR(EQN(U, 0), EQN(U, 0.0));

aThe definition in the published report is incorrect as it does not return T for
U of 0.0.

3.2 Functions on Dotted-Pairs

The following are elementary functions on dotted-pairs. All functions in this
section which require dotted-pairs as parameters detect a type mismatch error
if the actual parameter is not a dotted-pair.

CAR(U:dotted-pair):any eval, spread
CAR(CONS(a, b)) → a. The left part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

CDR(U:dotted-pair):any eval, spread
CDR(CONS(a, b)) → b. The right part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

The composites of CAR and CDR are supported up to 4 levels, namely:

3.2 Functions on Dotted-Pairs 11

CAAAAR CAAAR CAAR
CAAADR CAADR CADR
CAADAR CADAR CDAR
CAADDR CADDR CDDR
CADAAR CDAAR
CADADR CDADR
CADDAR CDDAR
CADDDR CDDDR
CDAAAR
CDAADR
CDADAR
CDADDR
CDDAAR
CDDADR
CDDDAR
CDDDDR

CONS(U:any, V:any):dotted-pair eval, spread
Returns a dotted-pair which is not EQ to anything and has U as its
CAR part and V as its CDR part.

LIST([U:any]):list noeval, nospread, or macro
A list of the evaluation of each element of U is returned. The order of
evaluation need not be first to last as the following definition implies.a

FEXPR PROCEDURE LIST(U);
EVLIS U;

aThe published report’s definition implies a specific ordering.

RPLACA(U:dotted-pair, V:any):dotted-pair eval, spread
The CAR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (V . b) is returned. The type mismatch error
occurs if U is not a dotted-pair.

RPLACD(U:dotted-pair, V:any):dotted-pair eval, spread
The CDR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (a . V) is returned. The type mismatch error
occurs if U is not a dotted-pair.

12 3 FUNCTIONS

3.3 Identifiers

The following functions deal with identifiers and the OBLIST, the structure of
which is not defined. The function of the OBLIST is to provide a symbol table
for identifiers created during input. Identifiers created by READ which have
the same characters will therefore refer to the same object (see the EQ function
in “Elementary Predicates”, section 3.1 on page 8).

COMPRESS(U:id-list):{atom-vector} eval, spread
U is a list of single character identifiers which is built into a Standard
LISP entity and returned. Recognized are numbers, strings, and
identifiers with the escape character prefixing special characters. The
formats of these items appear in “Primitive Data Types” section 2.1
on page 3. Identifiers are not interned on the OBLIST. Function
pointers may be compressed but this is an undefined use. If an entity
cannot be parsed out of U or characters are left over after parsing
an error occurs:

***** Poorly formed atom in COMPRESS

EXPLODE(U:{atom}-{vector}):id-list eval, spread
Returned is a list of interned characters representing the characters to
print of the value of U. The primitive data types have these formats:
integer Leading zeroes are suppressed and a minus sign prefixes the

digits if the integer is negative.

floating The value appears in the format [-]0.nn...nnE[-]mm if the
magnitude of the number is too large or small to display in
[-]nnnn.nnnn format. The crossover point is determined by the
implementation.

id The characters of the print name of the identifier are produced
with special characters prefixed with the escape character.

string The characters of the string are produced surrounded by dou-
ble quotes ”. . . ”.

function-pointer The value of the function-pointer is created as a
list of characters conforming to the conventions of the system
site.

The type mismatch error occurs if U is not a number, identifier,
string, or function-pointer.

GENSYM():identifier eval, spread
Creates an identifier which is not interned on the OBLIST and con-
sequently not EQ to anything else.

3.4 Property List Functions 13

INTERN(U:{id,string}):id eval, spread
INTERN searches the OBLIST for an identifier with the same print
name as U and returns the identifier on the OBLIST if a match
is found. Any properties and global values associated with U may
be lost. If U does not match any entry, a new one is created and
returned. If U has more than the maximum number of characters
permitted by the implementation (the minimum number is 24) an
error occurs:

***** Too many characters to INTERN

REMOB(U:id):id eval, spread
If U is present on the OBLIST it is removed. This does not affect U
having properties, flags, functions and the like. U is returned.

3.4 Property List Functions

With each id in the system is a “property list”, a set of entities which are
associated with the id for fast access. These entities are called “flags” if their
use gives the id a single valued property, and “properties” if the id is to have a
multivalued attribute: an indicator with a property.

Flags and indicators may clash, consequently care should be taken to avoid this
occurrence. Flagging X with an id which already is an indicator for X may
result in that indicator and associated property being lost. Likewise, adding an
indicator which is the same id as a flag may result in the flag being destroyed.

FLAG(U:id-list, V:id):NIL eval, spread
U is a list of ids which are flagged with V. The effect of FLAG is
that FLAGP will have the value T for those ids of U which were
flagged. Both V and all the elements of U must be identifiers or the
type mismatch error occurs.

FLAGP(U:any, V:any):boolean eval, spread
Returns T if U has been previously flagged with V, else NIL. Returns
NIL if either U or V is not an id.

14 3 FUNCTIONS

GET(U:any, IND:any):any eval, spread
Returns the property associated with indicator IND from the prop-
erty list of U. If U does not have indicator IND, NIL is returned.
GET cannot be used to access functions (use GETD instead).

PUT(U:id, IND:id, PROP:any):any eval, spread
The indicator IND with the property PROP is placed on the property
list of the id U. If the action of PUT occurs, the value of PROP is
returned. If either of U and IND are not ids the type mismatch error
will occur and no property will be placed. PUT cannot be used to
define functions (use PUTD instead).

REMFLAG(U:any-list, V:id):NIL eval, spread
Removes the flag V from the property list of each member of the
list U. Both V and all the elements of U must be ids or the type
mismatch error will occur.

REMPROP(U:any, IND:any):any eval, spread
Removes the property with indicator IND from the property list of U.
Returns the removed property or NIL if there was no such indicator.

3.5 Function Definition

Functions in Standard LISP are global entities. To avoid function-variable
naming clashes no variable may have the same name as a function.

DE(FNAME:id, PARAMS:id-list, FN:any):id noeval, nospread
The function FN with the formal parameter list PARAMS is added
to the set of defined functions with the name FNAME. Any previ-
ous definitions of the function are lost. The function created is of
type EXPR. If the !*COMP variable is non-NIL, the EXPR is first
compiled. The name of the defined function is returned.
FEXPR PROCEDURE DE(U);

PUTD(CAR U, ’EXPR, LIST(’LAMBDA, CADR U, CADDR U));

3.5 Function Definition 15

DF(FNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The function FN with formal parameter PARAM is added to the set
of defined functions with the name FNAME. Any previous definitions
of the function are lost. The function created is of type FEXPR. If
the !*COMP variable is T the FEXPR is first compiled. The name
of the defined function is returned.
FEXPR PROCEDURE DF(U);

PUTD(CAR U, ’FEXPR, LIST(’LAMBDA, CADR U, CADDR U));

DM(MNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The macro FN with the formal parameter PARAM is added to the
set of defined functions with the name MNAME. Any previous def-
initions of the function are overwritten. The function created is of
type MACRO. The name of the macro is returned.
FEXPR PROCEDURE DM(U);

PUTD(CAR U, ’MACRO, LIST(’LAMBDA, CADR U, CADDR U));

GETD(FNAME:any):{NIL, dotted-pair} eval, spread
If FNAME is not the name of a defined function, NIL is returned. If
FNAME is a defined function then the dotted-pair

(TYPE:ftype . DEF:{function-pointer, lambda})

is returned.

PUTD(FNAME:id, TYPE:ftype, BODY:function):id eval, spread
Creates a function with name FNAME and definition BODY of type
TYPE. If PUTD succeeds the name of the defined function is re-
turned. The effect of PUTD is that GETD will return a dotted-
pair with the functions type and definition. Likewise the GLOBALP
predicate will return T when queried with the function name.
If the function FNAME has already been declared as a GLOBAL or
FLUID variable the error:

***** FNAME is a non-local variable

occurs and the function will not be defined. If function FNAME
already exists a warning message will appear:

*** FNAME redefined

The function defined by PUTD will be compiled before definition if
the !*COMP global variable is non-NIL.

16 3 FUNCTIONS

REMD(FNAME:id):{NIL, dotted-pair} eval, spread
Removes the function named FNAME from the set of defined func-
tions. Returns the (ftype . function) dotted-pair or NIL as does
GETD. The global/function attribute of FNAME is removed and
the name may be used subsequently as a variable.

3.6 Variables and Bindings

A variable is a place holder for a Standard LISP entity which is said to be bound
to the variable. The scope of a variable is the range over which the variable
has a defined value. There are three different binding mechanisms in Standard
LISP.

Local Binding This type of binding occurs only in compiled functions. Local
variables occur as formal parameters in lambda expressions and as PROG
form variables. The binding occurs when a lambda expression is evaluated
or when a PROG form is executed. The scope of a local variable is the
body of the function in which it is defined.

Global Binding Only one binding of a global variable exists at any time al-
lowing direct access to the value bound to the variable. The scope of a
global variable is universal. Variables declared GLOBAL may not appear
as parameters in lambda expressions or as PROG form variables. A vari-
able must be declared GLOBAL prior to its use as a global variable since
the default type for undeclared variables is FLUID.

Fluid Binding Fluid variables are global in scope but may occur as formal
parameters or PROG form variables. In interpreted functions all formal
parameters and PROG form variables are considered to have fluid bind-
ing until changed to local binding by compilation. When fluid variables
are used as parameters they are rebound in such a way that the previ-
ous binding may be restored. All references to fluid variables are to the
currently active binding.

FLUID(IDLIST:id-list):NIL eval, spread
The ids in IDLIST are declared as FLUID type variables (ids not
previously declared are initialized to NIL). Variables in IDLIST al-
ready declared FLUID are ignored. Changing a variable’s type from
GLOBAL to FLUID is not permissible and results in the error:

***** ID cannot be changed to FLUID

3.6 Variables and Bindings 17

FLUIDP(U:any):boolean eval, spread
If U has been declared FLUID (by declaration only) T is returned,
otherwise NIL is returned.

GLOBAL(IDLIST:id-list):NIL eval, spread
The ids of IDLIST are declared global type variables. If an id has not
been declared previously it is initialized to NIL. Variables already de-
clared GLOBAL are ignored. Changing a variables type from FLUID
to GLOBAL is not permissible and results in the error:

***** ID cannot be changed to GLOBAL

GLOBALP(U:any):boolean eval, spread
If U has been declared GLOBAL or is the name of a defined function,
T is returned, else NIL is returned.

SET(EXP:id, VALUE:any):any eval, spread
EXP must be an identifier or a type mismatch error occurs. The
effect of SET is replacement of the item bound to the identifier by
VALUE. If the identifier is not a local variable or has not been de-
clared GLOBAL it is automatically declared FLUID with the result-
ing warning message:

*** EXP declared FLUID

EXP must not evaluate to T or NIL or an error occurs:

***** Cannot change T or NIL

18 3 FUNCTIONS

SETQ(VARIABLE:id, VALUE:any):any noeval, nospread
If VARIABLE is not local or GLOBAL it is by default declared
FLUID and the warning message:

*** VARIABLE declared FLUID

appears. The value of the current binding of VARIABLE is replaced
by the value of VALUE. VARIABLE must not be T or NIL or an
error occurs:

***** Cannot change T or NIL

MACRO PROCEDURE SETQ(X);
LIST(’SET, LIST(’QUOTE, CADR X), CADDR X);

UNFLUID(IDLIST:id-list):NIL eval, spread
The variables in IDLIST that have been declared as FLUID vari-
ables are no longer considered as fluid variables. Others are ignored.
This affects only compiled functions as free variables in interpreted
functions are automatically considered fluid [3].

3.7 Program Feature Functions

These functions provide for explicit control sequencing, and the definition of
blocks altering the scope of local variables.

3.7 Program Feature Functions 19

GO(LABEL:id) noeval, nospread
GO alters the normal flow of control within a PROG function. The
next statement of a PROG function to be evaluated is immediately
preceded by LABEL. A GO may only appear in the following situa-
tions:

1. At the top level of a PROG referencing a label which also ap-
pears at the top level of the same PROG.

2. As the consequent of a COND item of a COND appearing on
the top level of a PROG.

3. As the consequent of a COND item which appears as the con-
sequent of a COND item to any level.

4. As the last statement of a PROGN which appears at the top
level of a PROG or in a PROGN appearing in the consequent
of a COND to any level subject to the restrictions of 2 and 3.

5. As the last statement of a PROGN within a PROGN or as the
consequent of a COND in a PROGN to any level subject to
the restrictions of 2, 3 and 4.

If LABEL does not appear at the top level of the PROG in which
the GO appears, an error occurs:

***** LABEL is not a known label

If the GO has been placed in a position not defined by rules 1-5,
another error is detected:

***** Illegal use of GO to LABEL

PROG(VARS:id-list, [PROGRAM:{id, any}]):any noeval, nospread
VARS is a list of ids which are considered fluid when the PROG is
interpreted and local when compiled (see “Variables and Bindings”,
section 3.6 on page 16). The PROGs variables are allocated space
when the PROG form is invoked and are deallocated when the PROG
is exited. PROG variables are initialized to NIL. The PROGRAM
is a set of expressions to be evaluated in order of their appearance
in the PROG function. Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The value re-
turned by the PROG function is determined by a RETURN function
or NIL if the PROG “falls through”.

PROGN([U:any]):any noeval, nospread
U is a set of expressions which are executed sequentially. The value
returned is the value of the last expression.

20 3 FUNCTIONS

PROG2(A:any, B:any)any eval, spread
Returns the value of B.
EXPR PROCEDURE PROG2(A, B);

B;

RETURN(U:any) eval, spread
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions on the
placement of RETURN are exactly those of GO. Improper placement
of RETURN results in the error:

***** Illegal use of RETURN

3.8 Error Handling

ERROR(NUMBER:integer, MESSAGE:any) eval, spread
NUMBER and MESSAGE are passed back to a surrounding ER-
RORSET (the Standard LISP reader has an ERRORSET). MES-
SAGE is placed in the global variable EMSG!* and the error number
becomes the value of the surrounding ERRORSET. FLUID variables
and local bindings are unbound to return to the environment of the
ERRORSET. Global variables are not affected by the process.

3.9 Vectors 21

ERRORSET(U:any, MSGP:boolean, TR:boolean):any eval, spread
If an error occurs during the evaluation of U, the value of NUMBER
from the ERROR call is returned as the value of ERRORSET. In
addition, if the value of MSGP is non-NIL, the MESSAGE from the
ERROR call is displayed upon both the standard output device and
the currently selected output device unless the standard output de-
vice is not open. The message appears prefixed with 5 asterisks. The
MESSAGE list is displayed without top level parentheses. The MES-
SAGE from the ERROR call will be available in the global variable
EMSG!*. The exact format of error messages generated by Standard
LISP functions described in this document are not fixed and should
not be relied upon to be in any particular form. Likewise, error
numbers generated by Standard LISP functions are implementation
dependent.
If no error occurs during the evaluation of U, the value of (LIST
(EVAL U)) is returned.
If an error has been signaled and the value of TR is non-NIL a trace-
back sequence will be initiated on the selected output device. The
traceback will display information such as unbindings of FLUID vari-
ables, argument lists and so on in an implementation dependent for-
mat.

3.9 Vectors

Vectors are structured entities in which random elements may be accessed with
an integer index. A vector has a single dimension. Its maximum size is deter-
mined by the implementation and available space. A suggested input “vector
notation” is defined in “Classes of Primitive Data Types”, section 2.2 on page 5
and output with EXPLODE, “Identifiers” section 3.3 on page 12.

GETV(V:vector, INDEX:integer):any eval, spread
Returns the value stored at position INDEX of the vector V. The
type mismatch error may occur. An error occurs if the INDEX does
not lie within 0. . . UPBV(V) inclusive:

***** INDEX subscript is out of range

22 3 FUNCTIONS

MKVECT(UPLIM:integer):vector eval, spread
Defines and allocates space for a vector with UPLIM+1 elements
accessed as 0. . . UPLIM. Each element is initialized to NIL. An error
will occur if UPLIM is < 0 or there is not enough space for a vector
of this size:

***** A vector of size UPLIM cannot be allocated

PUTV(V:vector, INDEX:integer, VALUE:any):any eval, spread
Stores VALUE into the vector V at position INDEX. VALUE is re-
turned. The type mismatch error may occur. If INDEX does not lie
in 0. . . UPBV(V) an error occurs:

***** INDEX subscript is out of range

UPBV(U:any):NIL,integer eval, spread
Returns the upper limit of U if U is a vector, or NIL if it is not.

3.10 Boolean Functions and Conditionals

AND([U:any]):extra-boolean noeval, nospread
AND evaluates each U until a value of NIL is found or the end of the
list is encountered. If a non-NIL value is the last value it is returned,
or NIL is returned.
FEXPR PROCEDURE AND(U);
BEGIN

IF NULL U THEN RETURN NIL;
LOOP: IF NULL CDR U THEN RETURN EVAL CAR U

ELSE IF NULL EVAL CAR U THEN RETURN NIL;
U := CDR U;
GO LOOP

END;

3.11 Arithmetic Functions 23

COND([U:cond-form]):any noeval, nospread
The antecedents of all U’s are evaluated in order of their appearance
until a non-NIL value is encountered. The consequent of the selected
U is evaluated and becomes the value of the COND. The consequent
may also contain the special functions GO and RETURN subject to
the restraints given for these functions in “Program Feature Func-
tions”, section 3.7 on page 18. In these cases COND does not have
a defined value, but rather an effect. If no antecedent is non-NIL
the value of COND is NIL. An error is detected if a U is improperly
formed:

***** Improper cond-form as argument of COND

NOT(U:any):boolean eval, spread
If U is NIL, return T else return NIL (same as function NULL).
EXPR PROCEDURE NOT(U);

U EQ NIL;

OR([U:any]):extra-boolean noeval, nospread
U is any number of expressions which are evaluated in order of their
appearance. When one is found to be non-NIL it is returned as the
value of OR. If all are NIL, NIL is returned.
FEXPR PROCEDURE OR(U);
BEGIN SCALAR X;
LOOP: IF NULL U THEN RETURN NIL

ELSE IF (X := EVAL CAR U) THEN RETURN X;
U := CDR U;
GO LOOP

END;

3.11 Arithmetic Functions

Conversions between numeric types are provided explicitly by the FIX and
FLOAT functions and implicitly by any multi-parameter arithmetic function
which receives mixed types of arguments. A conversion from fixed to floating
point numbers may result in a loss of precision without a warning message being
generated. Since integers may have a greater magnitude that that permitted
for floating numbers, an error may be signaled when the attempted conversion
cannot be done. Because the magnitude of integers is unlimited the conversion
of a floating point number to a fixed number is always possible, the only loss of
precision being the digits to the right of the decimal point which are truncated.
If a function receives mixed types of arguments the general rule will have the
fixed numbers converted to floating before arithmetic operations are performed.

24 3 FUNCTIONS

In all cases an error occurs if the parameter to an arithmetic function is not a
number:

***** XXX parameter to FUNCTION is not a number

XXX is the value of the parameter at fault and FUNCTION is the name of the
function that detected the error. Exceptions to the rule are noted where they
occur.

ABS(U:number):number eval, spread
Returns the absolute value of its argument.
EXPR PROCEDURE ABS(U);

IF LESSP(U, 0) THEN MINUS(U) ELSE U;

ADD1(U:number):number eval, spread
Returns the value of U plus 1 of the same type as U (fixed or floating).
EXPR PROCEDURE ADD1(U);

PLUS2(U, 1);

DIFFERENCE(U:number, V:number):number eval, spread
The value U - V is returned.

DIVIDE(U:number, V:number):dotted-pair eval, spread
The dotted-pair (quotient . remainder) is returned. The quotient
part is computed the same as by QUOTIENT and the remainder
the same as by REMAINDER. An error occurs if division by zero is
attempted:

***** Attempt to divide by 0 in DIVIDE

EXPR PROCEDURE DIVIDE(U, V);
(QUOTIENT(U, V) . REMAINDER(U, V));

EXPT(U:number, V:integer):number eval, spread
Returns U raised to the V power. A floating point U to an inte-
ger power V does not have V changed to a floating number before
exponentiation.

3.11 Arithmetic Functions 25

FIX(U:number):integer eval, spread
Returns an integer which corresponds to the truncated value of U.
The result of conversion must retain all significant portions of U. If
U is an integer it is returned unchanged.

FLOAT(U:number):floating eval, spread
The floating point number corresponding to the value of the argu-
ment U is returned. Some of the least significant digits of an integer
may be lost do to the implementation of floating point numbers.
FLOAT of a floating point number returns the number unchanged.
If U is too large to represent in floating point an error occurs:

***** Argument to FLOAT is too large

GREATERP(U:number, V:number):boolean eval, spread
Returns T if U is strictly greater than V, otherwise returns NIL.

LESSP(U:number, V:number):boolean eval, spread
Returns T if U is strictly less than V, otherwise returns NIL.

MAX([U:number]):number noeval, nospread, or macro
Returns the largest of the values in U. If two or more values are the
same the first is returned.
MACRO PROCEDURE MAX(U);

EXPAND(CDR U, ’MAX2);

MAX2(U:number, V:number):number eval, spread
Returns the larger of U and V. If U and V are the same value U is
returned (U and V might be of different types).
EXPR PROCEDURE MAX2(U, V);

IF LESSP(U, V) THEN V ELSE U;

MIN([U:number]):number noeval, nospread, or macro
Returns the smallest of the values in U. If two or more values are the
same the first of these is returned.
MACRO PROCEDURE MIN(U);

EXPAND(CDR U, ’MIN2);

26 3 FUNCTIONS

MIN2(U:number, V:number):number eval, spread
Returns the smaller of its arguments. If U and V are the same value,
U is returned (U and V might be of different types).
EXPR PROCEDURE MIN2(U, V);

IF GREATERP(U, V) THEN V ELSE U;

MINUS(U:number):number eval, spread
Returns -U.
EXPR PROCEDURE MINUS(U);

DIFFERENCE(0, U);

PLUS([U:number]):number noeval, nospread, or macro
Forms the sum of all its arguments.
MACRO PROCEDURE PLUS(U);

EXPAND(CDR U, ’PLUS2);

PLUS2(U:number, V:number):number eval, spread
Returns the sum of U and V.

QUOTIENT(U:number, V:number):number eval, spread
The quotient of U divided by V is returned. Division of two positive
or two negative integers is conventional. When both U and V are
integers and exactly one of them is negative the value returned is
the negative truncation of the absolute value of U divided by the
absolute value of V. An error occurs if division by zero is attempted:

***** Attempt to divide by 0 in QUOTIENT

REMAINDER(U:number, V:number):number eval, spread
If both U and V are integers the result is the integer remainder of
U divided by V. If either parameter is floating point, the result is
the difference between U and V*(U/V) all in floating point. If either
number is negative the remainder is negative. If both are positive or
both are negative the remainder is positive. An error occurs if V is
zero:

***** Attempt to divide by 0 in REMAINDER

EXPR PROCEDURE REMAINDER(U, V);
DIFFERENCE(U, TIMES2(QUOTIENT(U, V), V));

3.12 MAP Composite Functions 27

SUB1(U:number):number eval, spread
Returns the value of U less 1. If U is a FLOAT type number, the
value returned is U less 1.0.
EXPR PROCEDURE SUB1(U);

DIFFERENCE(U, 1);

TIMES([U:number]):number noeval, nospread, or macro
Returns the product of all its arguments.
MACRO PROCEDURE TIMES(U);

EXPAND(CDR U, ’TIMES2);

TIMES2(U:number, V:number):number eval, spread
Returns the product of U and V.

3.12 MAP Composite Functions

MAP(X:list, FN:function):any eval, spread
Applies FN to successive CDR segments of X. NIL is returned.
EXPR PROCEDURE MAP(X, FN);

WHILE X DO << FN X; X := CDR X >>;

MAPC(X:list, FN:function):any eval, spread
FN is applied to successive CAR segments of list X. NIL is returned.
EXPR PROCEDURE MAPC(X, FN);

WHILE X DO << FN CAR X; X := CDR X >>;

MAPCAN(X:list, FN:function):any eval, spread
A concatenated list of FN applied to successive CAR elements of X
is returned.
EXPR PROCEDURE MAPCAN(X, FN);

IFNULL X THEN NIL
ELSE NCONC(FN CAR X, MAPCAN(CDR X, FN));

MAPCAR(X:list, FN:function):any eval, spread
Returned is a constructed list of FN applied to each CAR of list X.
EXPR PROCEDURE MAPCAR(X, FN);

IFNULL X THEN NIL
ELSE FN CAR X . MAPCAR(CDR X, FN);

28 3 FUNCTIONS

MAPCON(X:list, FN:function):any eval, spread
Returned is a concatenated list of FN applied to successive CDR
segments of X.
EXPR PROCEDURE MAPCON(X, FN);

IFNULL X THEN NIL
ELSE NCONC(FN X, MAPCON(CDR X, FN));

MAPLIST(X:list, FN:function):any eval, spread
Returns a constructed list of FN applied to successive CDR segments
of X.
EXPR PROCEDURE MAPLIST(X, FN);

IFNULL X THEN NIL
ELSE FN X . MAPLIST(CDR X, FN);

3.13 Composite Functions

APPEND(U:list, V:list):list eval, spread
Returns a constructed list in which the last element of U is followed
by the first element of V. The list U is copied, V is not.
EXPR PROCEDURE APPEND(U, V);

IFNULL U THEN V
ELSE CAR U . APPEND(CDR U, V);

ASSOC(U:any, V:alist):{dotted-pair, NIL} eval, spread
If U occurs as the CAR portion of an element of the alist V, the
dotted-pair in which U occurred is returned, else NIL is returned.
ASSOC might not detect a poorly formed alist so an invalid con-
struction may be detected by CAR or CDR.
EXPR PROCEDURE ASSOC(U, V);

IF NULL V THEN NIL
ELSE IF ATOM CAR V THEN

ERROR(000, LIST(V, "is a poorly formed alist"))
ELSE IF U = CAAR V THEN CAR V
ELSE ASSOC(U, CDR V);

3.13 Composite Functions 29

DEFLIST(U:dlist, IND:id):list eval, spread
A ”dlist” is a list in which each element is a two element list: (ID:id
PROP:any). Each ID in U has the indicator IND with property
PROP placed on its property list by the PUT function. The value
of DEFLIST is a list of the first elements of each two element list.
Like PUT, DEFLIST may not be used to define functions.
EXPR PROCEDURE DEFLIST(U, IND);

IF NULL U THEN NIL
ELSE << PUT(CAAR U, IND, CADAR U);

CAAR U >> . DEFLIST(CDR U, IND);

DELETE(U:any, V:list):list eval, spread
Returns V with the first top level occurrence of U removed from it.
EXPR PROCEDURE DELETE(U, V);

IF NULL V THEN NIL
ELSE IF CAR V = U THEN CDR V
ELSE CAR V . DELETE(U, CDR V);

DIGIT(U:any):boolean eval, spread
Returns T if U is a digit, otherwise NIL.
EXPR PROCEDURE DIGIT(U);

IF MEMQ(U, ’(!0 !1 !2 !3 !4 !5 !6 !7 !8 !9))
THEN T ELSE NIL;

LENGTH(X:any):integer eval, spread
The top level length of the list X is returned.
EXPR PROCEDURE LENGTH(X);

IF ATOM X THEN 0
ELSE PLUS(1, LENGTH CDR X);

LITER(U:any):boolean eval, spread
Returns T if U is a character of the alphabet, NIL otherwise.a

EXPR PROCEDURE LITER(U);
IF MEMQ(U, ’(!A !B !C !D !E !F !G !H !I !J !K !L !M

!N !O !P !Q !R !S !T !U !V !W !X !Y !Z
!a !b !c !d !e !f !g !h !i !j !k !l !m
!n !o !p !q !r !s !t !u !v !w !x !y !z))

THEN T ELSE NIL;

aThe published report omits escape characters. These are required for both
upper and lower case as some systems default to lower.

30 3 FUNCTIONS

MEMBER(A:any, B:list):extra-boolean eval, spread
Returns NIL if A is not a member of list B, returns the remainder of
B whose first element is A.
EXPR PROCEDURE MEMBER(A, B);

IF NULL B THEN NIL
ELSE IF A = CAR B THEN B
ELSE MEMBER(A, CDR B);

MEMQ(A:any, B:list):extra-boolean eval, spread
Same as MEMBER but an EQ check is used for comparison.
EXPR PROCEDURE MEMQ(A, B);

IF NULL B THEN NIL
ELSE IF A EQ CAR B THEN B
ELSE MEMQ(A, CDR B);

NCONC(U:list, V:list):list eval, spread
Concatenates V to U without copying U. The last CDR of U is
modified to point to V.
EXPR PROCEDURE NCONC(U, V);
BEGIN SCALAR W;

IF NULL U THEN RETURN V;
W := U;
WHILE CDR W DO W := CDR W;
RPLACD(W, V);
RETURN U

END;

PAIR(U:list, V:list):alist eval, spread
U and V are lists which must have an identical number of elements.
If not, an error occurs (the 000 used in the ERROR call is arbitrary
and need not be adhered to). Returned is a list where each element
is a dotted-pair, the CAR of the pair being from U, and the CDR
the corresponding element from V.
EXPR PROCEDURE PAIR(U, V);

IF AND(U, V) THEN (CAR U . CAR V) . PAIR(CDR U, CDR V)
ELSE IF OR(U, V) THEN ERROR(000,

"Different length lists in PAIR")
ELSE NIL;

3.13 Composite Functions 31

REVERSE(U:list):list eval, spread
Returns a copy of the top level of U in reverse order.
EXPR PROCEDURE REVERSE(U);
BEGIN SCALAR W;

WHILE U DO << W := CAR U . W;
U := CDR U >>;

RETURN W
END;

SASSOC(U:any, V:alist, FN:function):any eval, spread
Searches the alist V for an occurrence of U. If U is not in the alist
the evaluation of function FN is returned.
EXPR PROCEDURE SASSOC(U, V, FN);

IF NULL V THEN FN()
ELSE IF U = CAAR V THEN CAR V
ELSE SASSOC(U, CDR V, FN);

SUBLIS(X:alist, Y:any):any eval, spread
The value returned is the result of substituting the CDR of each
element of the alist X for every occurrence of the CAR part of that
element in Y.
EXPR PROCEDURE SUBLIS(X, Y);
IF NULL X THEN Y

ELSE BEGIN SCALAR U;
U := ASSOC(Y, X);
RETURN IF U THEN CDR U

ELSE IF ATOM Y THEN Y
ELSE SUBLIS(X, CAR Y) .

SUBLIS(X, CDR Y)
END;

SUBST(U:any, V:any, W:any):any eval, spread
The value returned is the result of substituting U for all occurrences
of V in W.
EXPR PROCEDURE SUBST(U, V, W);

IF NULL W THEN NIL
ELSE IF V = W THEN U
ELSE IF ATOM W THEN W
ELSE SUBST(U, V, CAR W) . SUBST(U, V, CDR W);

32 3 FUNCTIONS

3.14 The Interpreter

APPLY(FN:{id,function}, ARGS:any-list):any eval, spread
APPLY returns the value of FN with actual parameters ARGS. The
actual parameters in ARGS are already in the form required for
binding to the formal parameters of FN. Implementation specific
portions described in English are enclosed in boxes.
EXPR PROCEDURE APPLY(FN, ARGS);
BEGIN SCALAR DEFN;

IF CODEP FN THEN RETURN

Spread the actual parameters in ARGS
following the conventions: for calling
functions, transfer to the entry point
of the function, and return the value
returned by the function.

;

IF IDP FN THEN RETURN
IF NULL(DEFN := GETD FN) THEN

ERROR(000, LIST(FN, "is an undefined function"))
ELSE IF CAR DEFN EQ ’EXPR THEN

APPLY(CDR DEFN, ARGS)
ELSE ERROR(000,

LIST(FN, "cannot be evaluated by APPLY"));
IF OR(ATOM FN, NOT(CAR FN EQ ’LAMBDA)) THEN

ERROR(000,
LIST(FN, "cannot be evaluated by APPLY"));

RETURN

Bind the actual parameters in ARGS to
the formal parameters of the lambda
expression. If the two lists are not
of equal length then ERROR(000, "Number
of parameters do not match"); The value
returned is EVAL CADDR FN.

END;

3.14 The Interpreter 33

EVAL(U:any):any eval, spread
The value of the expression U is computed. Error numbers are ar-
bitrary. Portions of EVAL involving machine specific coding are
expressed in English enclosed in boxes.
EXPR PROCEDURE EVAL(U);
BEGIN SCALAR FN;

IF CONSTANTP U THEN RETURN U;
IF IDP U THEN RETURN

U is an id. Return the value most
currently bound to U or if there
is no such binding: ERROR(000,
LIST("Unbound:", U));

IF PAIRP CAR U THEN RETURN
IF CAAR U EQ ’LAMBDA THEN APPLY(CAR U, EVLIS CDR U)
ELSE ERROR(000, LIST(CAR U,

"improperly formed LAMBDA expression"))
ELSE IF CODEP CAR U THEN

RETURN APPLY(CAR U, EVLIS CDR U);
FN := GETD CAR U;
IF NULL FN THEN

ERROR(000, LIST(CAR U, "is an undefined function"))
ELSE IF CAR FN EQ ’EXPR THEN

RETURN APPLY(CDR FN, EVLIS CDR U)
ELSE IF CAR FN EQ ’FEXPR THEN

RETURN APPLY(CDR FN, LIST CDR U)
ELSE IF CAR FN EQ ’MACRO THEN

RETURN EVAL APPLY(CDR FN, LIST U)
END;

EVLIS(U:any-list):any-list eval, spread
EVLIS returns a list of the evaluation of each element of U.
EXPR PROCEDURE EVLIS(U);

IF NULL U THEN NIL
ELSE EVAL CAR U . EVLIS CDR U;

EXPAND(L:list, FN:function):list eval, spread
FN is a defined function of two arguments to be used in the expansion
of a MACRO. EXPAND returns a list in the form:

(FN L0 (FN L1 . . . (FN Ln−1 Ln) . . .))

where n is the number of elements in L, Li is the ith element of L.
EXPR PROCEDURE EXPAND(L,FN);

IF NULL CDR L THEN CAR L
ELSE LIST(FN, CAR L, EXPAND(CDR L, FN));

34 3 FUNCTIONS

FUNCTION(FN:function):function noeval, nospread
The function FN is to be passed to another function. If FN is to have
side effects its free variables must be fluid or global. FUNCTION is
like QUOTE but its argument may be affected by compilation. We
do not consider FUNARGs in this report.

QUOTE(U:any):any noeval, nospread
Stops evaluation and returns U unevaluated.
FEXPR PROCEDURE QUOTE(U);

CAR U;

3.15 Input and Output

The user normally communicates with Standard LISP through “standard de-
vices”. The default devices are selected in accordance with the conventions
of the implementation site. Other input and output devices or files may be
selected for reading and writing using the functions described herein.

CLOSE(FILEHANDLE:any):any eval, spread
Closes the file with the internal name FILEHANDLE writing any
necessary end of file marks and such. The value of FILEHANDLE
is that returned by the corresponding OPEN. The value returned is
the value of FILEHANDLE. An error occurs if the file can not be
closed.

***** FILEHANDLE could not be closed

EJECT():NIL eval, spread
Skip to the top of the next output page. Automatic EJECTs are
executed by the print functions when the length set by the PAGE-
LENGTH function is exceeded.

3.15 Input and Output 35

LINELENGTH(LEN:{integer, NIL}):integer eval, spread
If LEN is an integer the maximum line length to be printed before
the print functions initiate an automatic TERPRI is set to the value
LEN. No initial Standard LISP line length is assumed. The previous
line length is returned except when LEN is NIL. This special case
returns the current line length and does not cause it to be reset. An
error occurs if the requested line length is too large for the currently
selected output file or LEN is negative or zero.

***** LEN is an invalid line length

LPOSN():integer eval, spread
Returns the number of lines printed on the current page. At the top
of a page, 0 is returned.

OPEN(FILE:any, HOW:id):any eval, spread
Open the file with the system dependent name FILE for output if
HOW is EQ to OUTPUT, or input if HOW is EQ to INPUT. If the
file is opened successfully, a value which is internally associated with
the file is returned. This value must be saved for use by RDS and
WRS. An error occurs if HOW is something other than INPUT or
OUTPUT or the file can’t be opened.

***** HOW is not option for OPEN
***** FILE could not be opened

PAGELENGTH(LEN:{integer, NIL}):integer eval, spread
Sets the vertical length (in lines) of an output page. Automatic page
EJECTs are executed by the print functions when this length is
reached. The initial vertical length is implementation specific. The
previous page length is returned. If LEN is 0, no automatic page
ejects will occur.

POSN():integer eval, spread
Returns the number of characters in the output buffer. When the
buffer is empty, 0 is returned.

36 3 FUNCTIONS

PRINC(U:id):id eval, spread
U must be a single character id such as produced by EXPLODE or
read by READCH or the value of !$EOL!$. The effect is the character
U displayed upon the currently selected output device. The value of
!$EOL!$ causes termination of the current line like a call to TERPRI.

PRINT(U:any):any eval, spread
Displays U in READ readable format and terminates the print line.
The value of U is returned.
EXPR PROCEDURE PRINT(U);

<< PRIN1 U; TERPRI(); U >>;

PRIN1(U:any):any eval, spread
U is displayed in a READ readable form. The format of display is
the result of EXPLODE expansion; special characters are prefixed
with the escape character !, and strings are enclosed in ”. . . ”. Lists
are displayed in list-notation and vectors in vector-notation.

PRIN2(U:any):any eval, spread
U is displayed upon the currently selected print device but output is
not READ readable. The value of U is returned. Items are displayed
as described in the EXPLODE function with the exceptions that
the escape character does not prefix special characters and strings
are not enclosed in ”. . . ”. Lists are displayed in list-notation and
vectors in vector-notation. The value of U is returned.

RDS(FILEHANDLE:any):any eval, spread
Input from the currently selected input file is suspended and fur-
ther input comes from the file named. FILEHANDLE is a system
dependent internal name which is a value returned by OPEN. If
FILEHANDLE is NIL the standard input device is selected. When
end of file is reached on a non-standard input device, the standard
input device is reselected. When end of file occurs on the standard
input device the Standard LISP reader terminates. RDS returns the
internal name of the previously selected input file.

***** FILEHANDLE could not be selected for input

3.16 LISP Reader 37

READ():any
The next expression from the file currently selected for input. Valid
input forms are: vector-notation, dot-notation, list-notation, num-
bers, function-pointers, strings, and identifiers with escape charac-
ters. Identifiers are interned onW the OBLIST (see the INTERN
function in ”Identifiers”, section 3.3 on page 12). READ returns the
value of !$EOF!$ when the end of the currently selected input file is
reached.

READCH():id
Returns the next interned character from the file currently selected
for input. Two special cases occur. If all the characters in an input
record have been read, the value of !$EOL!$ is returned. If the file
selected for input has all been read the value of !$EOF!$ is returned.
Comments delimited by % and end-of-line are not transparent to
READCH.

TERPRI():NIL
The current print line is terminated.

WRS(FILEHANDLE:any):any eval, spread
Output to the currently active output file is suspended and further
output is directed to the file named. FILEHANDLE is an internal
name which is returned by OPEN. The file named must have been
opened for output. If FILEHANDLE is NIL the standard output
device is selected. WRS returns the internal name of the previously
selected output file.

***** FILEHANDLE could not be selected for output

3.16 LISP Reader

An EVAL read loop has been chosen to drive a Standard LISP system to provide
a continuity in functional syntax. Choices of messages and the amount of extra
information displayed are decisions left to the implementor.

EXPR PROCEDURE STANDARD!-LISP();
BEGIN SCALAR VALUE;

RDS NIL; WRS NIL;
PRIN2 "Standard LISP"; TERPRI();
WHILE T DO

<< PRIN2 "EVAL:"; TERPRI();
VALUE := ERRORSET(QUOTE EVAL READ(), T, T);

38 4 SYSTEM GLOBAL VARIABLES

IF NOT ATOM VALUE THEN PRINT CAR VALUE;
TERPRI() >>;

END;

QUIT()
Causes termination of the LISP reader and control to be transferred
to the operating system.

4 System GLOBAL Variables

These variables provide global control of the LISP system, or implement values
which are constant throughout execution.2

*COMP = NIL global
The value of !*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If !*COMP is
NIL the function is defined as an xEXPR. If !*COMP is something
else the function is first compiled. Compilation will produce certain
changes in the semantics of functions particularly FLUID type access.

EMSG* = NIL global
Will contain the MESSAGE generated by the last ERROR call (see
“Error Handling” section 3.8 on page 20).

EOF = <an uninterned identifier> global
The value of !$EOF!$ is returned by all input functions when the end
of the currently selected input file is reached.

EOL = <an uninterned identifier> global
The value of !$EOL!$ is returned by READCH when it reaches the
end of a logical input record. Likewise PRINC will terminate its
current line (like a call to TERPRI) when !$EOL!$ is its argument.

*GC = NIL global
!*GC controls the printing of garbage collector messages. If NIL
no indication of garbage collection may occur. If non-NIL various
system dependent messages may be displayed.

2The published document does not specify that all these are GLOBAL.

39

NIL = NIL global
NIL is a special global variable. It is protected from being modified
by SET or SETQ.

*RAISE = NIL global
If !*RAISE is non-NIL all characters input through Standard LISP
input/output functions will be raised to upper case. If !*RAISE is
NIL characters will be input as is.

T = T global
T is a special global variable. It is protected from being modified by
SET or SETQ.

5 The Extended Syntax

Whenever it is possible to define Standard LISP functions in LISP the text of
the function will appear in an extended syntax. These definitions are supplied
as an aid to understanding the behavior of functions and not as a strict imple-
mentation guide. A formal scheme for the translation of extended syntax to
Standard LISP is presented to eliminate misinterpretation of the definitions.

5.1 Definition

The goal of the transformation scheme is to produce a PUTD invocation which
has the function translated from the extended syntax as its actual parameter.
A rule has a name in brackets <. . .> by which it is known and is defined
by what follows the meta symbol ::=. Each rule of the set consists of one or
more “alternatives” separated by the | meta symbol, being the different ways
in which the rule will be matched by source text. Each alternative is composed
of a “recognizer” and a “generator” separated by the =⇒ meta symbol. The
recognizer is a concatenation of any of three different forms. 1) Terminals -
Upper case lexemes and punctuation which is not part of the meta syntax
represent items which must appear as is in the source text for the rule to
succeed. 2) Rules - Lower case lexemes enclosed in <. . .> are names of other
rules. The source text is matched if the named rule succeeds. 3) Primitives
- Lower case singletons not in brackets are names of primitives or primitive
classes of Standard LISP. The syntax and semantics of the primitives are given
in Part I.

The recognizer portion of the following rule matches an extended syntax pro-
cedure:

<function> ::= ftype PROCEDURE id (<id list>);
<statement>; =⇒

A function is recognized as an “ftype” (one of the tokens EXPR, FEXPR, etc.)

40 5 THE EXTENDED SYNTAX

followed by the keyword PROCEDURE, followed by an “id” (the name of the
function), followed by an <id list> (the formal parameter names) enclosed in
parentheses. A semicolon terminates the title line. The body of the function is
a <statement> followed by a semicolon. For example:

EXPR PROCEDURE NULL(X); EQ(X, NIL);

satisfies the recognizer, causes the generator to be activated and the rule to be
matched successfully.

The generator is a template into which generated items are substituted. The
three syntactic entities have corresponding meanings when they appear in the
generator portion. 1) Terminals - These lexemes are copied as is to the generated
text. 2) Rules - If a rule has succeeded in the recognizer section then the value
of the rule is the result of the generator portion of that rule. 3) Primitives -
When primitives are matched the primitive lexeme replaces its occurrence in
the generator.

If more than one occurrence of an item would cause ambiguity in the generator
portion this entity appears with a bracketed subscript. Thus:

<conditional> ::=
IF <expression> THEN <statement1>

ELSE <statement2> . . .

has occurrences of two different <statement>s. The generator portion uses the
subscripted entities to reference the proper generated value.

The <function> rule appears in its entirety as:

<function> ::= ftype PROCEDURE id (<id list>);<statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

If the recognizer succeeds (as it would in the case of the NULL procedure
example) the generator returns:

(PUTD (QUOTE NULL) (QUOTE EXPR) (QUOTE (LAMBDA (X) (EQ X NIL))))

The identifier in the template is replaced by the procedure name NULL, <id
list> by the single formal parameter X, the <statement> by (EQ X NIL) which
is the result of the <statement> generator. EXPR replaces ftype, the type of
the defined procedure.

5.2 The Extended Syntax Rules

<function> ::= ftype PROCEDURE id (<id list>); <statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

5.2 The Extended Syntax Rules 41

<id list> ::= id =⇒ id |
id, <id list> =⇒ id <id list> |
=⇒ NIL

<statement> ::= <expression> =⇒ <expression> |
<proper statement> =⇒ <proper statement>

<proper statement> ::=
<assignment statement> =⇒ <assignment statement> |
<conditional statement> =⇒ <conditional statement> |
<while statement> =⇒ <while statement> |
<compound statement> =⇒ <compound statement>

<assignment statement> ::= id := <expression> =⇒
(SETQ id <expression>)

<conditional statement> ::=
IF <expression> THEN <statement1> ELSE <statement2> =⇒

(COND (<expression> <statement1>)(T <statement2>)) |
IF <expression> THEN <statement> =⇒

(COND (<expression> <statement>))

<while statement> ::= WHILE <expression> DO <statement> =⇒
(PROG NIL
LBL (COND ((NULL <expression>) (RETURN NIL)))

<statement>
(GO LBL))

<compound statement> ::=
BEGIN SCALAR <id list>; <program list> END =⇒

(PROG (<id list>) <program list>) |
BEGIN <program list> END =⇒

(PROG NIL <program list>) |
<< <statement list> >> =⇒ (PROGN <statement list>)

<program list> ::= <full statement> =⇒ <full statement> |
<full statement> <program list> =⇒

<full statement> <program list>

<full statement> ::= <statement> =⇒ <statement> | id: =⇒ id

<statement list> ::= <statement> =⇒ <statement> |
<statement>; <statement list> =⇒

<statement> <statement list>

<expression> ::=
<expression1> . <expression2> =⇒

(CONS <expression1> <expression2> |

42 REFERENCES

<expression1> = <expression2> =⇒
(EQUAL <expression1> <expression2>) |

<expression1> EQ <expression2> =⇒
(EQ <expression1> <expression2>) |

’<expression> =⇒ (QUOTE <expression>) |
function <expression> =⇒ (function <expression>) |
function(<argument list>) =⇒ (function <argument list>) |
number =⇒ number |
id =⇒ id

<argument list> ::= () =⇒ |
<expression> =⇒ <expression> |
<expression>, <argument list> =⇒ <expression> <argument list>

Notice the three infix operators . EQ and = which are translated into calls
on CONS, EQ, and EQUAL respectively. Note also that a call on a function
which has no formal parameters must have () as an argument list. The QUOTE
function is abbreviated by ’.

References

[1] Computation Center. LISP Reference Manual, CDC-6000. The University
of Texas at Austin.

[2] Stanford Center for Information Processing. LISP/360 Reference Manual.
Stanford University.

[3] M. L. Griss and A. C. Hearn. A portable LISP compiler. Software—
Practice and Experience, 11:541–605, June 1981.

[4] A. C. Hearn. Standard LISP. SIGPLAN Notices, 4:28–49, 1969. Reprinted
in SIGSAM Bulletin, ACM, Vol. 13, 1969, p. 28-49.

[5] A. C. Hearn. REDUCE user’s manual: Version 3.3. Publication CP78
(Rev 1/88), RAND, 1988.

[6] MACLISP Reference Manual, March 1976.

[7] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin. LISP 1.5 Programmers Manual. The M.I.T. Press,
Cambridge, Massachusettes, 1965.

[8] Mats Nordstrom, Erik Sandewall, and Diz Breslow. LISP F1: A FOR-
TRAN Implementation of LISP 1.5. Uppsala University, Department of
Computer Sciences.

[9] Lynn H. Quam and Whitfield Diffie. Stanford LISP 1.6 Manual. Stanford
Artificial Intelligence Laboratory, operating note 28.7 edition.

[10] Warren Teitelman. INTERLISP Reference Manual. XEROX, Palo Alto
Research Centers, 3333 Coyote Road, Palo Alto, California 94304, 1978.

	Introduction
	Preliminaries
	Primitive Data Types
	Classes of Primitive Data Types
	Structures
	Function Descriptions
	Function Types
	Error and Warning Messages
	Comments

	Functions
	Elementary Predicates
	Functions on Dotted-Pairs
	Identifiers
	Property List Functions
	Function Definition
	Variables and Bindings
	Program Feature Functions
	Error Handling
	Vectors
	Boolean Functions and Conditionals
	Arithmetic Functions
	MAP Composite Functions
	Composite Functions
	The Interpreter
	Input and Output
	LISP Reader

	System GLOBAL Variables
	The Extended Syntax
	Definition
	The Extended Syntax Rules

