The Package SPDE for Determining Symmetries of
Partial Differential Equations

Fritz Schwarz
GMD, Institut F1
Postfach 1240
5205 St. Augustin
GERMANY

Telephone: +49-2241-142782
Email: fritz.schwarzQgmd.de

The package SPDE provides a set of functions which may be applied to
determine the symmetry group of Lie- or point-symmetries of a given sys-
tem of partial differential equations. Preferably it is used interactively on
a computer terminal. In many cases the determining system is solved com-
pletely automatically. In some other cases the user has to provide some
additional input information for the solution algorithm to terminate. The
package should only be used in compiled form.

For all theoretical questions, a description of the algorithm and numerous
examples the following articles should be consulted: “Automatically Deter-
mining Symmetries of Partial Differential Equations”, Computing vol. 34,
page 91-106(1985) and vol. 36, page 279-280(1986), “Symmetries of Differ-
ential Equations: From Sophus Lie to Computer Algebra”, SIAM Review,
to appear, and Chapter 2 of the Lecture Notes “Computer Algebra and
Differential Equations of Mathematical Physics”, to appear.

1 DESCRIPTION OF THE SYSTEM FUNCTIONS AND VARIABLES2

’ Function name ‘ Operation ‘
CRESYS(<arguments>) | Constructs determining system
SIMPSYS() Solves determining system
RESULT() Prints infinitesimal generators

and commutator table

Table 1: SPDE Functions

’ Function name ‘ Operation
PRSYS() Prints determining system
PRGEN() Prints infinitesimal generators
COMM(U,V) | Prints commutator of generators U and V

Table 2: SPDE Useful Output Functions

1 Description of the System Functions and Vari-
ables

The symmetry analysis of partial differential equations logically falls into
three parts. Accordingly the most important functions provided by the
package are:

Some other useful functions for obtaining various kinds of output are:

There are several global variables defined by the system which should not
be used for any other purpose than that given in Table 3 and 4. The three
globals of the type integer are:

In addition there are the following global variables of type operator:

The differential equations of the system at issue have to be assigned as values
to the operator deq i applying the notation which is defined in Table 4. The
entries in the third and the last line of that Table have obvious extensions

’ Variable name ‘ Meaning
NN Number of independent variables
MM Number of dependent variables
PCLASS=0, 1 or 2 Controls amount of output

Table 3: SPDE Integer valued globals

1 DESCRIPTION OF THE SYSTEM FUNCTIONS AND VARIABLES3

’ Variable name ‘ Meaning ‘
X(I) Independent variable x;
U(ALFA) Dependent variable u®/@
U(ALFA,I) Derivative of u®/® w.r.t. a;
DEQ(I) i-th differential equation
SDER(I) Derivative w.r.t. which DEQ(I) is resolved
GL(I) i-th equation of determining system
GEN(I) i-th infinitesimal generator
XI(I), ETA(ALFA) See definition given in the
ZETA(ALFA)I) references quoted in the introduction.
C(I) i-th function used for substitution

Table 4: SPDE Operator type global variables

to higher derivatives.

The derivative w.r.t. which the i-th differential equation deq i is resolved has
to be assigned to sder i. Exception: If there is a single differential equation
and no assignment has been made by the user, the highest derivative is taken
by default.

When the appropriate assignments are made to the variable deq, the values
of NN and MM (Table 2) are determined automatically, i.e. they have not
to be assigned by the user.

The function CRESYS may be called with any number of arguments, i.e.
CRESYS(); or CRESYS(deq 1,deq 2,...);

are legal calls. If it is called without any argument, all current assignments
to deq are taken into account. Example: If deq 1, deq 2 and deq 3 have been
assigned a differential equation and the symmetry group of the full system
comprising all three equations is desired, equivalent calls are

CRESYS(); or CRESYS(deq 1,deq 2,deq 3);

The first alternative saves some typing. If later in the session the symmetry
group of deq 1 alone has to be determined, the correct call is

CRESYS deq 1;

After the determining system has bee created, SIMPSYS which has no ar-
guments may be called for solving it. The amount of intermediate output

2 HOW TO USE THE PACKAGE 4

produced by SIMPSYS is controlled by the global variable PCLASS with
the default value 0. With PCLASS equal to 0, no intermediate steps are
shown. With PCLASS equal to 1, all intermediate steps are displayed so
that the solution algorithm may be followed through in detail. Each time
the algorithm passes through the top of the main solution loop the message

Entering main loop

is written. PCLASS equal 2 produces a lot of LISP output and is of no
interest for the normal user.

If with PCLASS=0 the procedure SIMPSYS terminates without any re-
sponse, the determining system is completely solved. In some cases SIMP-
SYS does not solve the determining system completely in a single run. In
general this is true if there are only genuine differential equations left which
the algorithm cannot handle at present. If a case like this occurs, SIMPSYS
returns the remaining equations of the determining system. To proceed with
the solution algorithm, appropriate assignments have to be transmitted by
the user, e.g. the explicit solution for one of the returned differential equa-
tions. Any new functions which are introduced thereby must be operators
of the form c(k) with the correct dependencies generated by a depend state-
ment (see the “REDUCE User’s Guide”). Its enumeration has to be chosen
in agreement with the current number of functions which have alreday been
introduced. This value is returned by SIMPSYS too.

After the determining system has been solved, the procedure RESULT,
which has no arguments, may be called. It displays the infinitesimal gener-
ators and its non-vanishing commutators.

2 How to Use the Package

In this Section it is explained by way of several examples how the pack-
age SPDE is used interactively to determine the symmetry group of partial
differential equations. Consider first the diffusion equation which in the
notation given above may be written as

deq 1:=u(1,1)+u(1,2,2);

It has been assigned as the value of deq 1 by this statement. There is no
need to assign a value to sder 1 here because the system comprises only a
single equation.

2 HOW TO USE THE PACKAGE 5

The determining system is constructed by calling
CRESYS(); or CRESYS deq 1;

The latter call is compulsory if there are other assignments to the operator
deq i than for i=1.

The error message
**xxx*x Differential equations not defined
appears if there are no differential equations assigned to any deq.

If the user wants the determining system displayed for inspection before
starting the solution algorithm he may call

PRSYS() ;
and gets the answer

GL(1) :=2xDF(ETA(1),U(1),X(2)) - DF(XI(2),X(2),2) -
DF (XI(2),X(1))

GL(2) :=DF(ETA(1),U(1),2) - 2+DF(XI(2),U(1),X(2))
GL(3) :=DF (ETA(1),X(2),2) + DF(ETA(1),X(1))
GL(4) :=DF(XI(2),U(1),2)
GL(5) :=DF(XI(2),U(1)) - DF(XI(1),U(1),X(2))
GL(6) :=2xDF(XI(2),X(2)) - DF(XI(1),X(2),2) - DF(XI(1),X(1))
GL(7) :=DF(XI(1),U(1),2)
GL(8) :=DF(XI(1),U(1))
GL(9) :=DF (XI(1),X(2))
The remaining dependencies
XI(2) depends on U(1),X(2),X(1)

XI(1) depends on U(1),X(2),X(1)

2 HOW TO USE THE PACKAGE 6

ETA(1) depends on U(1),X(2),X(1)

The last message means that all three functions XI(1), XI(2) and ETA(1)
depend on X(1), X(2) and U(1). Without this information the nine equations
GL(1) to GL(9) forming the determining system are meaningless. Now the
solution algorithm may be activated by calling

SIMPSYS() ;

If the print flag PCLASS has its default value which is 0 no intermediate
output is produced and the answer is

Determining system is not completely solved
The remaining equations are
GL(1):=DF(C(1),X(2),2) + DF(C(1),X(1))
Number of functions is 16

The remaining dependencies

C(1) depends on X(2),X(1)

With PCLASS equal to 1 about 6 pages of intermediate output are obtained.
It allows the user to follow through each step of the solution algorithm.

In this example the algorithm did not solve the determining system com-
pletely as it is shown by the last message. This was to be expected because
the diffusion equation is linear and therefore the symmetry group contains
a generator depending on a function which solves the original differential
equation. In cases like this the user has to provide some additional infor-
mation to the system so that the solution algorithm may continue. In the
example under consideration the appropriate input is

DF(C(1),X(1)) := - DF(C(1),X(2),2);
If now the solution algorithm is activated again by
SIMPSYS();

the solution algorithm terminates without any further message, i.e. there
are no equations of the determining system left unsolved. To obtain the

2 HOW TO USE THE PACKAGE

symmetry generators one has to say finally
RESULTQ) ;
and obtains the answer

The differential equation

DEQ(1):=U(1,2,2) + U(1,1)

The symmetry generators are

GEN(1):

DX (1)

GEN(2) := DX(2)

GEN(3) := 2xDX(2)*X(1) + DU(1)*U(1)*X(2)

GEN(4) := DU(1)*U(1)

GEN(5) := 2+DX(1)*X(1) + DX(2)*X(2)

2
GEN(6) := 4xDX(1)*X(1)

+ 4xDX(2)*X(2) *X (1)

2
+ DUCL)*U(1)*(X(2) - 2%X(1))

GEN(7):

DU(1)*C(1)
The remaining dependencies

C(1) depends on X(2),X(1)

Constraints

2 HOW TO USE THE PACKAGE 8

DF(C(1),X(1)):= - DF(C(1),X(2),2)

The non-vanishing commutators of the finite subgroup

COMM(1,3) := 2*DX(2)

COMM(1,5) := 2*DX (1)

COMM(1,6) := 8*DX(1)*X(1) + 4*DX(2)*X(2) - 2xDU(1)*U(1)
COMM(2,3) := DU(1)*U(1)

COMM(2,5) := DX(2)

COMM(2,6) := 4*DX(2)*X(1) + 2*DU(1)*U(1)*X(2)
COMM(3,5) := - (2xDX(2)*X(1) + DU(1)*U(1)*X(2))

2
COMM(5,6) := 8*DX(1)*X(1)

+ 8xDX(2)*X(2)*X (1)

2
+ 2+xDU(D)*U(1)*(X(2) - 2%X(1))

The message “Constraints” which appears after the symmetry generators
are displayed means that the function c¢(1) depends on x(1) and x(2) and
satisfies the diffusion equation.

More examples which may used for test runs are given in the final section.

If the user wants to test a certain ansatz of a symmetry generator for given
differential equations, the correct proceeding is as follows. Create the deter-
mining system as described above. Make the appropriate assignments for
the generator and call PRSYS() after that. The determining system with
this ansatz substituted is returned. Example: Assume again that the de-
termining system for the diffusion equation has been created. To check the

2 HOW TO USE THE PACKAGE 9

correctness for example of generator GEN 3 which has been obtained above,
the assignments

XI(1):=0; XI(2):=2%X(1); ETA(1):=X(2)*U(1);

have to be made. If now PRSYS() is called all GL(K) are zero proving the
correctness of this generator.

Sometimes a user only wants to know some of the functions ZETA for for
various values of its possible arguments and given values of MM and NN.
In these cases the user has to assign the desired values of MM and NN and
may call the ZETAs after that. Example:

MM:=1; NN:=2;

FACTOR U(1,2),U(1,1),0(1,1,2),0(1,1,1);
ON LIST;

ZETA(1,1);

-U(1,2)*U(1,1)*DF (XI(2),U(1))
-U(1,2)*DF (XI(2),X(1))

2
-U(1,1) *DF(XI(1),U(1))

+U(1,1)*(DF(ETA(1),U(1)) -DF(XI(1),X(1)))

+DF(ETA(1),X(1))

ZETA(1,1,1);
-2%U(1,1,2)*U(1,1)*DF(XI(2),U(1))
-2%U(1,1,2)*DF(XI(2),X(1))

-U(1,1,1)*U(1,2)*DF(XI(2),U(1))

2 HOW TO USE THE PACKAGE 10

-3*%U(1,1,1)*U(1,1)*DF (XI(1),U(1))
+U(1,1,1)*(DF(ETA(1) ,U(1)) -2*DF(XI(1),X(1)))

2
-U(1,2)*U(1,1) *DF(XI(2),U(1),2)

-2%U(1,2)*U(1,1)*DF(XI(2),U(1),X(1))
-U(1,2)*DF(XI(2),X(1),2)

3
-U(1,1) *DF(XI(1),U(1),2)

2
+U(1,1) =(DF(ETA(1),U(1),2) -2*DF(XI(1),U(1),X(1)))

+U(1,1)*(2%DF(ETA(1) ,U(1),X(1)) -DF(XI(1),X(1),2))

+DF(ETA(1) ,X(1),2)
If by error no values to MM or NN and have been assigned the message
**xx*xx Number of variables not defined

is returned. Often the functions ZETA are desired for special values of its
arguments ETA(ALFA) and XI(K). To this end they have to be assigned
first to some other variable. After that they may be evaluated for the special
arguments. In the previous example this may be achieved by

Z11:=ZETA(1,1)$ Z111:=ZETA(1,1,1)$
Now assign the following values to XI 1, XI 2 and ETA 1:
XI 1:=4%X(1)*%2; XI 2:=4*%X(2)*X(1);

ETA 1:=U(D)*(X(2)**x2 - 2%X(1));

They correspond to the generator GEN 6 of the diffusion equation which has
been obtained above. Now the desired expressions are obtained by calling

Z11;

3 TEST FILE 11

2
- (4xU(1,2)*X(2) - U(,1)*X(2) + 10xU(1,1)*X(1) + 2%U(1))

Z111;
2

- (8*U(1,1,2)*X(2) - U(L1,1,1)*X(2) + 18xU(1,1,1)*X(1) +
12%U(1,1))

3 Test File

This appendix is a test file. The symmetry groups for various equations or
systems of equations are determined. The variable PCLASS has the default
value 0 and may be changed by the user before running it. The output may
be compared with the results which are given in the references.

%The Burgers equations

deq 1:=u(1l,1)+u 1*u(1,2)+u(1,2,2)$

cresys deq 1$ simpsys()$ result()$

%The Kadomtsev-Petviashvili equation

deq 1:=3%u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
+6xu(1,2) **x2+4*xu(1,1,2)$

cresys deq 1$ simpsys()$ result()$

%The modified Kadomtsev-Petviashvili equation

deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
+6xu(1,2) **2*%xu(1,2,2)+6*xu(1,3)*u(1,2,2)$

cresys deq 1$ simpsys(O$ result(O$

3 TEST FILE 12

%The real- and the imaginary part of the nonlinear
%Schroedinger equation

deq 1:= u(1,1)+u(2,2,2)+2*%u 1**2*%u 2+2xu 2x*3$

deq 2:=-u(2,1)+u(1,2,2)+2*%u 1*u 2**2+2xu 1**3$

JBecause this is not a single equation the two assignments
sder 1:=u(2,2,2)$ sder 2:=u(1,2,2)$

%are necessary.

cresys()$ simpsys(O$ result()$

%The symmetries of the system comprising the four equations
deq 1:=u(l,1)+u 1*xu(1,2)+u(1,2,2)$

deq 2:=u(2,1)+u(2,2,2)$

deq 3:=u 1*u 2-2xu(2,2)$

deq 4:=4*u(2,1)+u 2*x(u 1**2+2*u(1,2))$

sder 1:=u(1,2,2)$ sder 2:=u(2,2,2)$ sder 3:=u(2,2)$
sder 4:=u(2,1)$

%is obtained by calling
cresys(O$ simpsysO$

df(c 5,x 1):=-df(c 5,x 2,2)$
df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
simpsys(O$ result()$

% The symmetries of the subsystem comprising equation 1

3 TEST FILE

% and 3 are obtained by
cresys(deq 1,deq 3)$ simpsys()$ result()$

% The result for all possible subsystems is discussed in
% detail in ‘‘Symmetries and Involution Systems: Some

% Experiments in Computer Algebra’’, contribution to the
% Proceedings of the Oberwolfach Meeting on Nonlinear

% Evolution Equations, Summer 1986, to appear.

13

