
SPECFN: Special Functions Package for REDUCE

Chris Cannam, et. al.

Konrad–Zuse–Zentrum für Informationstechnik Berlin
Takustrasse 7

D–14195 Berlin – Dahlem
Federal Republic of Germany

E–mail: neun@zib.de

Version 2.5, October 1998

1 Introduction

This package provides the ’common’ special functions for REDUCE. The
names of the operators and implementation details can be found in this
document.

Due to the enormous number of special functions a package for special func-
tions is never complete. Several users pointed out that important classes
of special functions were missing in the first version. These comments and
other hints from a number of contributors and users were very helpful.

The first version of this package was developed while the author worked as
a student exchange grantee at ZIB Berlin in 1992/93. The package is main-
tained by ZIB Berlin after the author left the ZIB. Therefore, please direct
comments, hints and bug reports etc. to neun@zib.de. Numerous contribu-
tions have been integrated after the release with version 3.5 of REDUCE.

This package is designed to provide algebraic and numeric manipulations of
several common special functions, namely:

• Bernoulli numbers and Polynomials;

• Euler numbers and Polynomials;

• Fibonacci numbers and Polynomials;

1

1 INTRODUCTION 2

• Stirling numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The psi function and its derivatives;

• The Riemann Zeta function;

• The Bessel functions J and Y of the first and second kinds;

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy funcions;

• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• The Polylogarithm and Lerch Phi function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;

• Associated Legendre Functions (Spherical and Solid Harmonics)

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Lambert’s ω function;

• (Jacobi’s) Elliptic Functions;

• Elliptic Integrals;

• 3j and 6j symbols , Clebsch-Gordan coefficients;

• and some well-known constants.

2 COMPATIBILITY WITH EARLIER REDUCE VERSIONS 3

All algorithms whose sources are uncredited are culled from series or expres-
sions found in the Dover Handbook of Mathematical Functions[?].

There is a nice collection of plot calls for special functions in the file $re-
duce/plot/specplot.tst. These examples will reproduce a number of well-
known pictures from [?].

2 Compatibility with earlier REDUCE versions

For PSL versions, this package is intended to be used with the new REDUCE
bigfloat mechanisms which is distributed together with REDUCE 3.5 and
later versions. The package does work with the earlier bigfloat implementa-
tions, but in order to ensure that it works efficiently with the new versions,
it has not been optimized for the old.

3 Simplification and Approximation

All of the operators supported by this package have certain algebraic sim-
plification rules to handle special cases, poles, derivatives and so on. Such
rules are applied whenever they are appropriate. However, if the ROUNDED
switch is on, numeric evaluation is also carried out. Unless otherwise stated
below, the result of an application of a special function operator to real or
complex numeric arguments in rounded mode will be approximated numeri-
cally whenever it is possible to do so. All approximations are to the current
precision.

Most algebraic simplifications within the special function package are de-
fined in the form of a REDUCE ruleset. Therefore, in order to get a quick
insight into the simplification rules one can use the ShowRules operator, e.g.

ShowRules BesselI;

1 ~z - ~z
{besseli(~n,~z) => ---------------*(e - e)

sqrt(pi*2*~z)

3 SIMPLIFICATION AND APPROXIMATION 4

1
when numberp(~n) and ~n=---,

2

1 ~z - ~z
besseli(~n,~z) => ---------------*(e + e)

sqrt(pi*2*~z)

1
when numberp(~n) and ~n= - ---,

2

besseli(~n,~z) => 0

when numberp(~z) and ~z=0 and numberp(~n) and ~n neq 0,

besseli(~n,~z) => besseli(- ~n,~z) when numberp(~n)

and impart(~n)=0 and ~n=floor(~n) and ~n<0,

besseli(~n,~z) => do*i(~n,~z)

when numberp(~n) and numberp(~z) and *rounded,

df(besseli(~n,~z),~z)

besseli(~n - 1,~z) + besseli(~n + 1,~z)
=> ---,

2

df(besseli(~n,~z),~z)

=> besseli(1,~z) when numberp(~n) and ~n=0}

Several REDUCE packages (such as Sum or Limits) obtain different (hope-
fully better) results for the algebraic simplifications when the SPECFN pack-
age is loaded, because the later package contains some information which
may be useful and directly applicable for other packages, e.g.:

4 CONSTANTS 5

sum(1/k^s,k,1,infinity); % will be evaluated to

zeta(s)

A record is kept of all values previously approximated, so that should a
value be required which has already been computed to the current precision
or greater, it can be simply looked up. This can result in some storage over-
heads, particularly if many values are computed which will not be needed
again. In this case, the switch savesfs may be turned off in order to inhibit
the storage of approximated values. The switch is on by default.

4 Constants

Some well-known constants are defined in the special function package. Im-
portant properties of these constants which can be used to define them are
also known. Numerical values are computed at arbitrary precision if the
switch ROUNDED is on.

• Euler Gamma : Euler’s constants, also available as -ψ(1);

• Catalan : Catalan’s constant;

• Khinchin : Khinchin’s constant , defined in [?]. (takes a lot of time to
compute);

• Golden Ratio : 1+
√

5
2

5 Bernoulli Numbers and Euler Numbers

The unary operator Bernoulli provides notation and computation for Bernoulli
numbers. Bernoulli(n) evaluates to the nth Bernoulli number; all of the
odd Bernoulli numbers, except Bernoulli(1), are zero.

The algorithms are based upon those by Herbert Wilf, presented by Sandra
Fillebrown [?]. If the ROUNDED switch is off, the algorithms are exactly those;
if it is on, some further rounding may be done to prevent computation of
redundant digits. Hence, these functions are particularly fast when used to
approximate the Bernoulli numbers in rounded mode.

Euler numbers are computed by the unary operator Euler, which return

6 FIBONACCI NUMBERS AND FIBONACCI POLYNOMIALS 6

the nth Euler number. The computation is derived directly from Pascal’s
triangle of binomial coefficients.

6 Fibonacci Numbers and Fibonacci Polynomials

The unary operator Fibonacci provides notation and computation for Fi-
bonacci numbers. Fibonacci(n) evaluates to the nth Fibonacci number. If
n is a positive or negative integer, it will be evaluated following the defini-
tion:

F0 = 0; F1 = 1;Fn = Fn−1 + Fn−2

Fibonacci Polynomials are computed by the binary operator FibonacciP.
FibonacciP(n,x) returns the nth Fibonaccip polynomial in the variable x. If
n is a positive or negative integer, it will be evaluated following the definition:

F0(x) = 0; F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x)

7 Stirling Numbers

Stirling numbers of the first and second kind are computed by the binary
operators Stirling1 and Stirling2 using explicit formulae.

8 The Γ Function, and Related Functions

8.1 The Γ Function

This is represented by the unary operator Gamma.

Initial transformations applied with ROUNDED off are: Γ(n) for integral n is
computed, Γ(n + 1/2) for integral n is rewritten to an expression in

√
π,

Γ(n + 1/m) for natural n and m a positive integral power of 2 less than
or equal to 64 is rewritten to an expression in Γ(1/m), expressions with
arguments at which there is a pole are replaced by INFINITY, and those with
a negative (real) argument are rewritten so as to have positive arguments.

The algorithm used for numerical approximation is an implementation of
an asymptotic series for ln(Γ), with a scaling factor obtained from the

8 THE Γ FUNCTION, AND RELATED FUNCTIONS 7

Pochhammer functions.

An expression for Γ′(z) in terms of Γ and ψ is included.

8.2 The Pochhammer Notation

The Pochhammer notation (a)k is supported by the binary operator Pochhammer.
With ROUNDED off, this expression is evaluated numerically if a and k are
both integral, and otherwise may be simplified where appropriate. The sim-
plification rules are based upon algorithms supplied by Wolfram Koepf [?].

8.3 The Digamma Function, ψ

This is represented by the unary operator PSI.

Initial transformations for ψ are applied on a similar basis to those for Γ;
where possible, ψ(x) is rewritten in terms of ψ(1) and ψ(1

2), and expressions
with negative arguments are rewritten to have positive ones.

Numerical evaluation of ψ is only carried out if the argument is real. The
algorithm used is based upon an asymptotic series, with a suitable scaler.

Relations for the derivative and integral of ψ are included.

8.4 The Polygamma Functions, ψ(n)

The nth derivative of the ψ function is represented by the binary operator
Polygamma, whose first argument is n.

Initial manipulations on ψ(n) are few; where the second argument is 1 or
3/2, the expression is rewritten to one involving the Riemann ζ function,
and when the first is zero it is rewritten to ψ; poles are also handled.

Numerical evaluation is only carried out with real arguments. The algorithm
used is again an asymptotic series with a scaling factor; for negative (second)
arguments, a Reflection Formula is used, introducing a term in the nth
derivative of cot(zπ).

Simple relations for derivatives and integrals are provided.

9 BESSEL FUNCTIONS 8

8.5 The Riemann ζ Function

This is represented by the unary operator Zeta.

With ROUNDED off, ζ(z) is evaluated numerically for even integral arguments
in the range −31 < z < 31, and for odd integral arguments in the range
−30 < z < 16. Outside this range the values become a little unwieldy.

Numerical evaluation of ζ is only carried out if the argument is real. The
algorithms used for ζ are: for odd integral arguments, an expression relat-
ing ζ(n) with ψn−1(3); for even arguments, a trivial relationship with the
Bernoulli numbers; and for other arguments the approach is either (for larger
arguments) to take the first few primes in the standard over-all-primes ex-
pansion, and then continue with the defining series with natural numbers not
divisible by these primes, or (for smaller arguments) to use a fast-converging
series obtained from [?].

There are no rules for differentiation or integration of ζ.

9 Bessel Functions

Support is provided for the Bessel functions J and Y, the modified Bessel
functions I and K, and the Hankel functions of the first and second kinds.
The relevant operators are, respectively, BesselJ, BesselY, BesselI, BesselK,
Hankel1 and Hankel2, which are all binary operators.

The following initial transformations are performed:

• trivial cases or poles of J, Y, I and K are handled;

• J, Y, I and K with negative first argument are transformed to have
positive first argument;

• J with negative second argument is transformed for positive second
argument;

• Y or K with non-integral or complex second argument is transformed
into an expression in J or I respectively;

• derivatives of J, Y and I are carried out;

• derivatives of K with zero first argument are carried out;

• derivatives of Hankel functions are carried out.

10 HYPERGEOMETRIC AND OTHER FUNCTIONS 9

Also, if the COMPLEX switch is on and ROUNDED is off, expressions in Hankel
functions are rewritten in terms of Bessels.

No numerical approximation is provided for the Bessel K function, or for the
Hankel functions for anything other than special cases. The algorithms used
for the other Bessels are generally implementations of standard ascending
series for J, Y and I, together with asymptotic series for J and Y; usually,
the asymptotic series are tried first, and if the argument is too small for
them to attain the current precision, the standard series are applied. An
obvious optimization prevents an attempt with the asymptotic series if it is
clear from the outset that it will fail.

There are no rules for the integration of Bessel and Hankel functions.

10 Hypergeometric and Other Functions

This package also provides some support for other functions, in the form of
algebraic simplifications:

• The Beta function, a variation upon the Γ function[?], with the binary
operator Beta;

• The Struve H and L functions, through the binary operators StruveH
and StruveL, for which manipulations are provided to handle special
cases, simplify to more readily handled functions where appropriate,
and differentiate with respect to the second argument;

• The Lommel functions of the first and second kinds, through the
ternary operators Lommel1 and Lommel2, for which manipulations are
provided to handle special cases and simplify where appropriate;

• The Kummer confluent hypergeometric functions M and U (the hyper-
geometric 1F1 or Φ, and z−a

2F0 or Ψ, respectively), with the ternary
operators KummerM and KummerU, for which there are manipulations for
special cases and simplifications, derivatives and, for the M function,
numerical approximations for real arguments;

• The Whittaker M and W functions, variations upon the Kummer func-
tions, which, with the ternary operators WhittakerM and WhittakerW,
simplify to expressions in the Kummer functions.

11 INTEGRAL FUNCTIONS 10

11 Integral Functions

The SPECFN package includes manipulation and a limited numerical eval-
uation for some Integral functions, namely

erf, erfc, Si, Shi, si, Ci, Chi, Ei, li, Fresnel C and Fresnel S.

The definitions from integral, the derviatives and some limits are known
together with some simple properties such as symmetry conditions.

The numerical approximation for the Integral functions suffer from the fact
that the precision is not set correctly for values of the argument above 10.0
(approx.) and from the usage of summations even for large arguments.

li is simplified towards Ei(ln(z)) .

12 Airy Functions

Support is provided for the Airy Functions Ai and Bi and for the Airyprime
Functions Aiprime and Biprime. The relevant operators are respectively
Airy Ai, Airy Bi, Airy Aiprime, and Airy Biprime, which are all unary
operators with one argument.

The following cases can be performed:

• Trivial cases of Airy Ai and Airy Bi and their primes are handled.

• All cases can handle both complex and real arguments.

• The Airy Functions can also be represented in terms of Bessel Func-
tions by activating an inactive rule set.

In order to activate the Airy Function to Bessel Rules one should type:
let Airy2Bessel rules;. As a result the Airy Ai function, for example
will be calculated using the formula :-

Ai(z) = 1
3

√
z[I−1/3(ζ) - I1/3(ζ)] , where ζ = 2

3z
2
3

Note:- In order to obtain satisfactory approximations to results both the
COMPLEX and ROUNDED switches must be on.

The algorithms used for the Airy Functions are implementations of stan-
dard ascending series, together with asymptotic series. At some point it is

13 POLYNOMIAL FUNCTIONS 11

better to use the asymptotic approach, rather than the series. This value is
calculated by the program and depends on the given precision.

There are no rules for the integration of Airy Functions.

13 Polynomial Functions

Two groups are defined, some well-known orthogonal Polynomials (Her-
mite, Jacobi, Legendre, Laguerre, Chebyshev, Gegenbauer) and Euler and
Bernoulli Polynomials. The names of the REDUCE operator are build by
adding a P to the name of the polynomials, e.g. EulerP implements the
Euler polynomials. Most definitions are equivalent to [?], except for the
ternary (associated) Legendre Polynomials.

P(n,m,x) = (-1)^m *(1-x^2)^(m/2)*df(legendreP (n,x),x,m)

14 Spherical and Solid Harmonics

The relevant operators are, respectively,
SolidHarmonicY and SphericalHarmonicY.

The SolidHarmonicY operator implements the Solid Harmonics described
below. It expects 6 parameter, namely n,m,x,y,z and r2 and returns a poly-
nomial in x,y,z and r2.

The operator SphericalHarmonicY is a special case of SolidHarmonicY with
the usual definition:

algebraic procedure SphericalHarmonicY(n,m,theta,phi);
SolidHarmonicY(n,m,sin(theta)*cos(phi),

sin(theta)*sin(phi),cos(theta),1)$

Solid Harmonics of order n (Laplace polynomials) are homogeneous polyno-
mials of degree n in x,y,z which are solutions of Laplace equation:-

df(P,x,2) + df(P,y,2) + df(P,z,2) = 0.

There are 2*n+1 independent such polynomials for any given n >= 0 and
with:-

w!0 = z, w!+ = i*(x-i*y)/2, w!- = i*(x+i*y)/2,

14 SPHERICAL AND SOLID HARMONICS 12

they are given by the Fourier integral:-

S(n,m,w!-,w!0,w!+) =

(1/(2*pi)) *
for u:=-pi:pi integrate (w!0 + w!+ * exp(i*u) + w!- *

exp(-i*u))^n * exp(i*m*u) * du;

which is obviously zero if |m| > n since then all terms in the expanded
integrand contain the factor exp(i*k*u) with k neq 0,

S(n,m,x,y,z) is proportional to

r^n * Legendre(n,m,cos theta) * exp(i*phi)

Let r2 = x2 + y2 + z2 and r = sqrt(r2).

The spherical harmonics are simply the restriction of the solid harmonics
to the surface of the unit sphere and the set of all spherical harmonics
n >= 0;−n <= m =< n form a complete orthogonal basis on it, i.e.
< n,m|n′,m′ > = Kronecker delta(n,n’) * Kronecker delta(m,m’) using <
...|... > to designate the scalar product of functions over the spherical surface.

The coefficients of the solid harmonics are normalised in what follows to
yield an ortho-normal system of spherical harmonics.

Given their polynomial nature, there are many recursions formulae for the
solid harmonics and any recursion valid for Legendre functions can be ’trans-
lated’ into solid harmonics. However the direct proof is usually far simpler
using Laplace’s definition.

It is also clear that all differentiations of solid harmonics are trivial, qua
polynomials.

Some substantial reduction in the symbolic form would occur if one main-
tained throughout the recursions the symbol r2 (r cannot occur as it is not
rational in x,y,z). Formally the solid harmonics appear in this guise as more
compact polynomials in (x,y,z,r2).

Only two recursions are needed:-

(i) along the diagonal (n,n);

(ii) along a line of constant n: (m,m),(m+1,m),...,(n,m).

Numerically these recursions are stable.

15 JACOBI’S ELLIPTIC FUNCTIONS 13

For m < 0 one has:-

S(n,m,x,y,z) = (-1)^m * S(n,-m,x,-y,z);

15 Jacobi’s Elliptic Functions

The following functions have been implemented:

• The Twelve Jacobi Functions

• Arithmetic Geometric Mean

• Descending Landen Transformation

15.1 Jacobi Functions

The following Jacobi functions are available:-

• Jacobisn(u,m)

• Jacobidn(u,m)

• Jacobicn(u,m)

• Jacobicd(u,m)

• Jacobisd(u,m)

• Jacobind(u,m)

• Jacobidc(u,m)

• Jacobinc(u,m)

• Jacobisc(u,m)

• Jacobins(u,m)

• Jacobids(u,m)

• Jacobics(u,m)

They will be evaluated numerically if the rounded switch is used.

15.2 Amplitude

The amplitude of u can be evaluated using the JacobiAmplitude(u,m) com-
mand.

16 ELLIPTIC INTEGRALS 14

15.3 Arithmetic Geometric Mean

A procedure to evaluate the AGM of initial values a0, b0, c0 exists as
AGM function(a0, b0, c0) and will return
{N, AGM, {aN , . . . , a0}, {bN , . . . , b0}, {cN , . . . , c0}}, where N is the number
of steps to compute the AGM to the desired acuracy.

To determine the Elliptic Integrals K(m), E(m) we use initial values a0 = 1;
b0 =

√
1−m ; c0 =

√
m.

15.4 Descending Landen Transformation

The procedure to evaluate the Descending Landen Transformation of phi
and alpha uses the following equations:

(1 + sinαn+1)(1 + cosαn) = 2 where αn+1 < αn

tan(φn+1 − φn) = cosαntanφn where φn+1 > φn

It can be called using landentrans(φ0,α0) and will return
{{φ0, . . . , φn}, {α0, . . . , αn}}.

16 Elliptic Integrals

The following functions have been implemented:

• Elliptic Integrals of the First Kind

• Elliptic Integrals of the Second Kind

• Jacobi θ Functions

• Jacobi ζ Function

16.1 Elliptic F

The Elliptic F function can be used as EllipticF(φ,m) and will return the
value of the Elliptic Integral of the First Kind.

17 LAMBERT’S W FUNCTION 15

16.2 Elliptic K

The Elliptic K function can be used as EllipticK(m) and will return the
value of the Complete Elliptic Integral of the First Kind, K. It is often used
in the calculation of other elliptic functions

16.3 Elliptic K′

The Elliptic K′ function can be used as EllipticK!′(m) and will return the
value K(1−m).

16.4 Elliptic E

The Elliptic E function comes with two different numbers of arguments:

It can be used with two arguments as EllipticE(φ,m) and will return the
value of the Elliptic Integral of the Second Kind.

The Elliptic E function can also be used as EllipticE(m) and will return
the value of the Complete Elliptic Integral of the Second Kind, E.

16.5 Elliptic Θ Functions

This can be used as EllipticTheta(a,u,m), where a is the index for the
theta functions (a = 1, 2, 3 or 4) and will return H; H1; Θ1; Θ. (Also
denoted in some texts as ϑ1; ϑ2; ϑ3; ϑ4.)

16.6 Jacobi’s Zeta Function Z

This can be used as JacobiZeta(u,m) and will return Jacobi Zeta. Note:
the operator Zeta will invoke Riemann’s ζ function.

17 Lambert’s W function

Lambert’s W function is the inverse of the function w ∗ ew. Therefore it
is an important contribution for the solve package. The function is studied

18 3J SYMBOLS AND CLEBSCH-GORDAN COEFFICIENTS 16

extensively in [?]. The current implementation will compute the principal
branch in ROUNDED mode only.

18 3j symbols and Clebsch-Gordan Coefficients

The operators ThreeJSymbol, Clebsch Gordan are defined like in [?] or [?].
ThreeJSymbol expects as arguments three lists of values {ji,mi}, e.g.

ThreeJSymbol({J+1,M},{J,-M},{1,0});
Clebsch_Gordan({2,0},{2,0},{2,0});

19 6j symbols

The operator SixJSymbol is defined like in [?] or [?]. SixJSymbol expects
two lists of values {j1, j2, j3} and {l1, l2, l3} as arguments, e.g.

SixJSymbol({7,6,3},{2,4,6});

In the current implementation of the SixJSymbol, there is only a limited
reasoning about the minima and maxima of the summation using the INEQ
package, such that in most cases the special 6j-symbols (see e.g. [?]) will
not be found.

20 Acknowledgements

The contributions of Kerry Gaskell, Matthew Rebbeck, Lisa Temme, Stephen
Scowcroft and David Hobbs (all students from the University of Bath on
placement in ZIB Berlin for one year) were very helpful to augment the
package. The advise of René Grognard (CSIRO , Australia) for the develop-
ment of the module for Clebsch-Gordan and 3j, 6j symbols and the module
for spherical and solid harmonics was very much appreciated.

21 TABLE OF OPERATORS AND CONSTANTS 17

21 Table of Operators and Constants

Function Operator

Jν(z) BesselJ(nu,z)
Yν(z) BesselY(nu,z)
Iν(z) BesselI(nu,z)

Kν(z) BesselK(nu,z)

H
(1)
ν (z) Hankel1(n,z)

H
(2)
ν (z) Hankel2(n,z)
Hν(z) StruveH(nu,z)
Lν(z) StruveL(n,z)
sa,b(z) Lommel1(a,b,z)
Sa,b(z) Lommel2(a,b,z)
Ai(z) Airy Ai(z)
Bi(z) Airy Bi(z)
Ai′(z) Airy Aiprime(z)
Bi′(z) Airy Biprime(z)

M(a, b, z) or 1F1(a, b; z) or Φ(a, b; z) KummerM(a,b,z)
U(a, b, z) or z−a

2F0(a, b; z) or Ψ(a, b; z) KummerU(a,b,z)
Mκ,µ(z) WhittakerM(kappa,mu,z)
Wκ,µ(z) WhittakerW(kappa,mu,z)

Fibonacci Numbers Fn Fibonacci(n)
Fibonacci Polynomials Fn(x) FibonacciP(n)

Bn(x) BernoulliP(n,x)
En(x) EulerP(n,x)

C
(α)
n (x) GegenbauerP(n,alpha,x)
Hn(x) HermiteP(n,x)
Ln(x) LaguerreP(n,x)

L
(m)
n (x) LaguerreP(n,m,x)
Pn(x) LegendreP(n,x)

P
(m)
n (x) LegendreP(n,m,x)

21 TABLE OF OPERATORS AND CONSTANTS 18

Function Operator

P
(α,β)
n (x) JacobiP(n,alpha,beta,x)

Un(x) ChebyshevU(n,x)
Tn(x) ChebyshevT(n,x)

Y m
n (x, y, z, r2) SolidHarmonicY(n,m,x,y,z,r2)

Y m
n (θ, φ) SphericalHarmonicY(n,m,theta,phi)(

j1
m1

j2
m2

j3
m3

)
ThreeJSymbol({j1,m1},{j2,m2},{j3,m3})

(j1m1j2m2|j1j2j3 −m3) Clebsch Gordan({j1,m1},{j2,m2},{j3,m3}){
j1
l1

j2
l2

j3
l3

}
SixJSymbol({j1,j2,j3},{l1,l2,l3})

sn(u|m) Jacobisn(u,m)
dn(u|m) Jacobidn(u,m)
cn(u|m) Jacobicn(u,m)
cd(u|m) Jacobicd(u,m)
sd(u|m) Jacobisd(u,m)
nd(u|m) Jacobind(u,m)
dc(u|m) Jacobidc(u,m)
nc(u|m) Jacobinc(u,m)
sc(u|m) Jacobisc(u,m)
ns(u|m) Jacobins(u,m)
ds(u|m) Jacobids(u,m)
cs(u|m) Jacobics(u,m)
F (φ|m) EllipticF(phi,m)

K(m) EllipticK(m)
E(φ|m)orE(m) EllipticE(phi,m) or EllipticE(m)

H(u|m),H1(u|m), Θ1(u|m),Θ(u|m) EllipticTheta(a,u,m)
θ1(u|m), θ2(u|m), θ3(u|m), θ4(u|m) EllipticTheta(a,u,m)

Z(u|m) Zeta function(u,m)

Lambert ω(z) Lambert W(z)

Constant REDUCE name

Euler’s γ constant Euler gamma
Catalan’s constant Catalan

Khinchin’s constant Khinchin
Golden ratio Golden ratio

REFERENCES 19

Function Operator

(n
m

)
Binomial(n,m)

Motzkin(n) Motzkin(n)
Bernoulli(n) or Bn Bernoulli(n)

Euler(n) or En Euler(n)

S
(m)
n Stirling1(n,m)

S(m)
n Stirling2(n,m)

B(z, w) Beta(z,w)
Γ(z) Gamma(z)

incomplete Beta Bx(a, b) iBeta(a,b,x)
incomplete Gamma Γ(a, z) iGamma(a,z)

(a)k Pochhammer(a,k)
ψ(z) Psi(z)

ψ(n)(z) Polygamma(n,z)
Riemann’s ζ(z) Zeta(z)

Si(z) Si(z)
si(z) s i(z)
Ci(z) Ci(z)

Shi(z) Shi(z)
Chi(z) Chi(z)
erf(z) erf(z)

erfc(z) erfc(z)
Ei(z) Ei(z)
li(z) li(z)
C(x) Fresnel C(x)
S(x) Fresnel S(x)

dilog(z) dilog(z)
Lin(z) Polylog(n,z)

Lerch Φ(z, s, a) Lerch Phi(z,s,a)

References

