
A REDUCE package for manipulation of Taylor

series

Rainer Schöpf
Zentrum für Datenverarbeitung der Universität Mainz

Anselm-Franz-von-Bentzel-Weg 12
D-55099 Mainz

Germany
E–mail: Schoepf@Uni-Mainz.DE

This short note describes a package of REDUCE procedures that allow Tay-
lor expansion in one or several variables, and efficient manipulation of the
resulting Taylor series. Capabilities include basic operations (addition, sub-
traction, multiplication and division), and also application of certain al-
gebraic and transcendental functions. To a certain extent, Laurent and
Puiseux expansions can be performed as well. In many cases, separable
singularities are detected and factored out.

1 Introduction

The Taylor package was written to provide REDUCE with some of the
facilities that MACSYMA’s TAYLOR function offers, but most of all I needed
it to be faster and more space-efficient. Especially I wanted procedures that
would return the logarithm or arc tangent of a Taylor series, again as a
Taylor series. This turned out be more work than expected. The features
absolutely required were (as usual) those that were hardest to implement,
e.g., arc tangent applied to a Taylor expansion in more than one variable.

This package is still undergoing development. I’ll be happy if it is of any
use for you. Tell me if you think that there is something missing. I invite
everybody to criticize and comment and will eagerly try to correct any errors
found.

1

2 HOW TO USE IT 2

2 How to use it

The most important operator is ‘TAYLOR’. It is used as follows:

TAYLOR(EXP:exprn[,VAR:kernel, VAR0:exprn,ORDER:integer]. . .):exprn

where EXP is the expression to be expanded. It can be any REDUCE object,
even an expression containing other Taylor kernels. VAR is the kernel with
respect to which EXP is to be expanded. VAR0 denotes the point about
which and ORDER the order up to which expansion is to take place. If more
than one (VAR, VAR0, ORDER) triple is specified TAYLOR will expand its
first argument independently with respect to each variable in turn. For
example,

taylor(e^(x^2+y^2),x,0,2,y,0,2);

will calculate the Taylor expansion up to order X2 ∗Y 2. Note that once the
expansion has been done it is not possible to calculate higher orders. Instead
of a kernel, VAR may also be a list of kernels. In this case expansion will take
place in a way so that the sum of the degrees of the kernels does not exceed
ORDER. If VAR0 evaluates to the special identifier INFINITY TAYLOR tries
to expand EXP in a series in 1/VAR.

The expansion is performed variable per variable, i.e. in the example above
by first expanding exp(x2 + y2) with respect to x and then expanding every
coefficient with respect to y.

There are two extra operators to compute the Taylor expansions of implicit
and inverse functions:

IMPLICIT TAYLOR(F:exprn,VAR1,VAR2:kernel,
VAR10,VAR20:exprn, ORDER:integer):exprn

takes a function F depending on two variables VAR1 and VAR2 and com-
putes the Taylor series of the implicit function VAR2(VAR1) given by the
equation F(VAR1,VAR2) = 0. For example,

implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);

INVERSE TAYLOR(F:exprn,VAR1,VAR2:kernel,
VAR10:exprn, ORDER:integer):exprn

takes a function F depending on VAR1 and computes the Taylor series of
the inverse of F with respect to VAR2. For example,

2 HOW TO USE IT 3

inverse_taylor(exp(x)-1,x,y,0,8);

When a Taylor kernel is printed, only a certain number of (non-zero) coef-
ficients are shown. If there are more, an expression of the form (n terms)
is printed to indicate how many non-zero terms have been suppressed. The
number of terms printed is given by the value of the shared algebraic vari-
able TAYLORPRINTTERMS. Allowed values are integers and the special identi-
fier ALL. The latter setting specifies that all terms are to be printed. The
default setting is 5.

The PART operator can be used to extract subexpressions of a Taylor expan-
sion in the usual way. All terms can be accessed, irregardless of the value of
the variable TAYLORPRINTTERMS.

If the switch TAYLORKEEPORIGINAL is set to ON the original expression EXP
is kept for later reference. It can be recovered by means of the operator

TAYLORORIGINAL(EXP:exprn):exprn

An error is signalled if EXP is not a Taylor kernel or if the original expression
was not kept, i.e. if TAYLORKEEPORIGINAL was OFF during expansion. The
template of a Taylor kernel, i.e. the list of all variables with respect to
which expansion took place together with expansion point and order can be
extracted using .

TAYLORTEMPLATE(EXP:exprn):list

This returns a list of lists with the three elements (VAR,VAR0,ORDER).
As with TAYLORORIGINAL, an error is signalled if EXP is not a Taylor kernel.

TAYLORTOSTANDARD(EXP:exprn):exprn

converts all Taylor kernels in EXP into standard form and resimplifies the
result.

TAYLORSERIESP(EXP:exprn):boolean

may be used to determine if EXP is a Taylor kernel. Note that this operator
is subject to the same restrictions as, e.g., ORDP or NUMBERP, i.e. it may
only be used in boolean expressions in IF or LET statements. Finally there
is

TAYLORCOMBINE(EXP:exprn):exprn

which tries to combine all Taylor kernels found in EXP into one. Operations
currently possible are:

2 HOW TO USE IT 4

• Addition, subtraction, multiplication, and division.

• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Application of unary operators like LOG and ATAN will nearly always succeed.
For binary operations their arguments have to be Taylor kernels with the
same template. This means that the expansion variable and the expansion
point must match. Expansion order is not so important, different order
usually means that one of them is truncated before doing the operation.

If TAYLORKEEPORIGINAL is set to ON and if all Taylor kernels in exp have their
original expressions kept TAYLORCOMBINE will also combine these and store
the result as the original expression of the resulting Taylor kernel. There is
also the switch TAYLORAUTOEXPAND (see below).

There are a few restrictions to avoid mathematically undefined expressions:
it is not possible to take the logarithm of a Taylor kernel which has no terms
(i.e. is zero), or to divide by such a beast. There are some provisions made
to detect singularities during expansion: poles that arise because the denom-
inator has zeros at the expansion point are detected and properly treated,
i.e. the Taylor kernel will start with a negative power. (This is accomplished
by expanding numerator and denominator separately and combining the re-
sults.) Essential singularities of the known functions (see above) are handled
correctly.

Differentiation of a Taylor expression is possible. If you differentiate with
respect to one of the Taylor variables the order will decrease by one.

Substitution is a bit restricted: Taylor variables can only be replaced by
other kernels. There is one exception to this rule: you can always substi-
tute a Taylor variable by an expression that evaluates to a constant. Note
that REDUCE will not always be able to determine that an expression is
constant.

Only simple taylor kernels can be integrated. More complicated expressions
that contain Taylor kernels as parts of themselves are automatically con-
verted into a standard representation by means of the TAYLORTOSTAN-
DARD operator. In this case a suitable warning is printed.

It is possible to revert a Taylor series of a function f , i.e., to compute the
first terms of the expansion of the inverse of f from the expansion of f . This
is done by the operator

3 CAVEATS 5

TAYLORREVERT(EXP:exprn,OLDVAR:kernel, NEWVAR:kernel):exprn

EXP must evaluate to a Taylor kernel with OLDVAR being one of its ex-
pansion variables. Example:

taylor (u - u**2, u, 0, 5);
taylorrevert (ws, u, x);

This package introduces a number of new switches:

• If you set TAYLORAUTOCOMBINE to ON REDUCE automatically combines
Taylor expressions during the simplification process. This is equivalent
to applying TAYLORCOMBINE to every expression that contains Taylor
kernels. Default is ON.

• TAYLORAUTOEXPAND makes Taylor expressions “contagious” in the sense
that TAYLORCOMBINE tries to Taylor expand all non-Taylor subexpres-
sions and to combine the result with the rest. Default is OFF.

• TAYLORKEEPORIGINAL, if set to ON, forces the package to keep the orig-
inal expression, i.e. the expression that was Taylor expanded. All
operations performed on the Taylor kernels are also applied to this ex-
pression which can be recovered using the operator TAYLORORIGINAL.
Default is OFF.

• TAYLORPRINTORDER, if set to ON, causes the remainder to be printed in
big-O notation. Otherwise, three dots are printed. Default is ON.

• There is also the switch VERBOSELOAD. If it is set to ON REDUCE will
print some information when the Taylor package is loaded. This switch
is already present in PSL systems. Default is OFF.

3 Caveats

TAYLOR should now always detect non-analytical expressions in its first argu-
ment. As an example, consider the function xy/(x+y) that is not analytical
in the neighborhood of (x, y) = (0, 0): Trying to calculate

taylor(x*y/(x+y),x,0,2,y,0,2);

causes an error

***** Not a unit in argument to QUOTTAYLOR

4 WARNINGS AND ERROR MESSAGES 6

Note that it is not generally possible to apply the standard REDUCE op-
erators to a Taylor kernel. For example, PART, COEFF, or COEFFN cannot be
used. Instead, the expression at hand has to be converted to standard form
first using the TAYLORTOSTANDARD operator.

4 Warnings and error messages

• Branch point detected in ...
This occurs if you take a rational power of a Taylor kernel and raising
the lowest order term of the kernel to this power yields a non analytical
term (i.e. a fractional power).

• Cannot expand further... truncation done
You will get this warning if you try to expand a Taylor kernel to a
higher order.

• Cannot replace part ... in Taylor kernel
The PART operator can only be used to either replace the template
of a Taylor kernel (part 2) or the original expression that is kept for
reference (part 3).

• Computation loops (recursive definition?): ...
Most probably the expression to be expanded contains an operator
whose derivative involves the operator itself.

• Converting Taylor kernels to standard representation
This warning appears if you try to integrate an expression that con-
tains Taylor kernels.

• Error during expansion (possible singularity)
The expression you are trying to expand caused an error. As far as
I know this can only happen if it contains a function with a pole or
an essential singularity at the expansion point. (But one can never be
sure.)

• Essential singularity in ...
An essential singularity was detected while applying a special function
to a Taylor kernel.

• Expansion point lies on branch cut in ...
The only functions with branch cuts this package knows of are (natu-
ral) logarithm, inverse circular and hyperbolic tangent and cotangent.

4 WARNINGS AND ERROR MESSAGES 7

The branch cut of the logarithm is assumed to lie on the negative real
axis. Those of the arc tangent and arc cotangent functions are chosen
to be compatible with this: both have essential singularities at the
points ±i. The branch cut of arc tangent is the straight line along the
imaginary axis connecting +1 to −1 going through ∞ whereas that of
arc cotangent goes through the origin. Consequently, the branch cut
of the inverse hyperbolic tangent resp. cotangent lies on the real axis
and goes from −1 to +1, that of the latter across 0, the other across
∞.

The error message can currently only appear when you try to calculate
the inverse tangent or cotangent of a Taylor kernel that starts with
a negative degree. The case of a logarithm of a Taylor kernel whose
constant term is a negative real number is not caught since it is difficult
to detect this in general.

• Invalid substitution in Taylor kernel: ...
You tried to substitute a variable that is already present in the Taylor
kernel or on which one of the Taylor variables depend.

• Not a unity in ...
This will happen if you try to divide by or take the logarithm of a
Taylor series whose constant term vanishes.

• Not implemented yet (...)
Sorry, but I haven’t had the time to implement this feature. Tell me
if you really need it, maybe I have already an improved version of the
package.

• Reversion of Taylor series not possible: ...
You tried to call the TAYLORREVERT operator with inappropriate ar-
guments. The second half of this error message tells you why this
operation is not possible.

• Taylor kernel doesn’t have an original part
The Taylor kernel upon which you try to use TAYLORORIGINAL was
created with the switch TAYLORKEEPORIGINAL set to OFF and does
therefore not keep the original expression.

• Wrong number of arguments to TAYLOR
You try to use the operator TAYLOR with a wrong number of arguments.

• Zero divisor in TAYLOREXPAND
A zero divisor was found while an expression was being expanded.

5 COMPARISON TO OTHER PACKAGES 8

This should not normally occur.

• Zero divisor in Taylor substitution
That’s exactly what the message says. As an example consider the case
of a Taylor kernel containing the term 1/x and you try to substitute
x by 0.

• ... invalid as kernel
You tried to expand with respect to an expression that is not a kernel.

• ... invalid as order of Taylor expansion
The order parameter you gave to TAYLOR is not an integer.

• ... invalid as Taylor kernel
You tried to apply TAYLORORIGINAL or TAYLORTEMPLATE to an expres-
sion that is not a Taylor kernel.

• ... invalid as Taylor Template element
You tried to substitute the TAYLORTEMPLATE part of a Taylor kernel
with a list a incorrect form. For the correct form see the description
of the TAYLORTEMPLATE operator.

• ... invalid as Taylor variable
You tried to substitute a Taylor variable by an expression that is not
a kernel.

• ... invalid as value of TaylorPrintTerms
You have assigned an invalid value to TAYLORPRINTTERMS. Allowed
values are: an integer or the special identifier ALL.

• TAYLOR PACKAGE (...): this can’t happen ...
This message shows that an internal inconsistency was detected. This
is not your fault, at least as long as you did not try to work with the
internal data structures of REDUCE. Send input and output to me,
together with the version information that is printed out.

5 Comparison to other packages

At the moment there is only one REDUCE package that I know of: the
truncated power series package by Alan Barnes and Julian Padget. In my
opinion there are two major differences:

• The interface. They use the domain mechanism for their power series,
I decided to invent a special kind of kernel. Both approaches have

5 COMPARISON TO OTHER PACKAGES 9

advantages and disadvantages: with domain modes, it is easier to do
certain things automatically, e.g., conversions.

• The concept of a truncated series. Their idea is to remember the
original expression and to compute more coefficients when more of
them are needed. My approach is to truncate at a certain order and
forget how the unexpanded expression looked like. I think that their
method is more widely usable, whereas mine is more efficient when
you know in advance exactly how many terms you need.

