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1 Introduction

This package is a careful implementation of the Gosper1 and Zeilberger al-
gorithms for indefinite, and definite summation of hypergeometric terms,
respectively. Further, extensions of these algorithms given by the first au-
thor are covered. An expression ak is called a hypergeometric term (or closed
form), if ak/ak−1 is a rational function with respect to k. Typical hyperge-
ometric terms are ratios of products of powers, factorials, Γ function terms,
binomial coefficients, and shifted factorials (Pochhammer symbols) that are
integer-linear in their arguments.

The extensions of Gosper’s and Zeilberger’s algorithm mentioned in partic-
ular are valid for ratios of products of powers, factorials, Γ function terms,
binomial coefficients, and shifted factorials that are rational-linear in their
arguments.

2 Gosper Algorithm

The Gosper algorithm [1] is a decision procedure, that decides by algebraic
calculations whether or not a given hypergeometric term ak has a hypergeo-
metric term antidifference gk, i. e. gk−gk−1 = ak with rational gk/gk−1, and

1The sum package contains also a partial implementation of the Gosper algorithm.
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2 GOSPER ALGORITHM 2

returns gk if the procedure is successful, in which case we call ak Gosper-
summable. Otherwise no hypergeometric term antidifference exists. There-
fore if the Gosper algorithm does not return a closed form solution, it has
proved that no such solution exists, an information that may be quite useful
and important. The Gosper algorithm is the discrete analogue of the Risch
algorithm for integration in terms of elementary functions.

Any antidifference is uniquely determined up to a constant, and is denoted
by

gk =
∑

k
ak .

Finding gk given ak is called indefinite summation. The antidifference oper-
ator Σ is the inverse of the downward difference operator ∇ak = ak − ak−1.
There is an analogous summation theory corresponding to the upward dif-
ference operator ∆ak = ak+1 − ak.

In case, an antidifference gk of ak is known, any sum

n∑

k=m

ak = gn − gm−1

can be easily calculated by an evaluation of g at the boundary points like in
the integration case. Note, however, that the sum

n∑

k=0

(
n

k

)
(1)

e. g. is not of this type since the summand
(n
k

)
depends on the upper bound-

ary point n explicitly. This is an example of a definite sum that we consider
in the next section.

Our package supports the input of powers (a^k), factorials (factorial(k)),
Γ function terms (gamma(a)), binomial coefficients (binomial(n,k)), shifted
factorials (pochhammer(a,k)= a(a + 1) · · · (a + k − 1) = Γ(a + k)/Γ(a)),
and partially products (prod(f,k,k1,k2)). It takes care of the necessary
simplifications, and therefore provides you with the solution of the decision
problem as long as the memory or time requirements are not too high for
the computer used.
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3 Zeilberger Algorithm

The (fast) Zeilberger algorithm [10]–[11] deals with the definite summation
of hypergeometric terms. Zeilberger’s paradigm is to find (and return) a
linear homogeneous recurrence equation with polynomial coefficients (called
holonomic equation) for an infinite sum

s(n) =
∞∑

k=−∞
f(n, k) ,

the summation to be understood over all integers k, if f(n, k) is a hyperge-
ometric term with respect to both k and n. The existence of a holonomic
recurrence equation for s(n) is then generally guaranteed.

If one is lucky, and the resulting recurrence equation is of first order

p(n) s(n− 1) + q(n) s(n) = 0 (p, q polynomials) ,

s(n) turns out to be a hypergeometric term, and a closed form solution can
be easily established using a suitable initial value, and is represented by a
ratio of Pochhammer or Γ function terms if the polynomials p, and q can be
factored.

Zeilberger’s algorithm does not guarantee to find the holonomic equation of
lowest order, but often it does.

If the resulting recurrence equation has order larger than one, this informa-
tion can be used for identification purposes: Any other expression satisfying
the same recurrence equation, and the same initial values, represents the
same function.

Note that a definite sum
m2∑

k=m1

f(n, k) is an infinite sum if f(n, k) = 0 for

k < m1 and k > m2. This is often the case, an example of which is the
sum (1) considered above, for which the hypergeometric recurrence equation
2s(n − 1) − s(n) = 0 is generated by Zeilberger’s algorithm, leading to the
closed form solution s(n) = 2n.

Definite summation is trivial if the corresponding indefinite sum is Gosper-
summable analogously to the fact that definite integration is trivial as soon
as an elementary antiderivative is known. If this is not the case, the situation
is much more difficult, and it is therefore quite remarkable and non-obvious
that Zeilberger’s method is just a clever application of Gosper’s algorithm.
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Our implementation is mainly based on [3] and [2]. More examples can be
found in [5], [7], [8], and [9] many of which are contained in the test file
zeilberg.tst.

4 REDUCE operator GOSPER

The ZEILBERG package must be loaded by:

1: load zeilberg;

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not
return a closed form solution, then a closed form solution does not
exist.

• gosper(a,k,m,n) determines
n∑

k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s algorithm
applies.

Example:

2: gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
- ( - 1) *factorial(2*k)

------------------------------------
2*k

2 *factorial(k + 1)*factorial(k)

This solves a problem given in SIAM Review ([6], Problem 94–2) where it
was asked to determine the infinite sum

S = lim
n→∞Sn , Sn =

n∑

k=1

(−1)k+1(4k + 1)(2k − 1)!!
2k(2k − 1)(k + 1)!

,

((2k − 1)!! = 1 · 3 · · · (2k − 1) = (2k)!
2k k!

). The above calculation shows that
the summand is Gosper-summable, and the limit S = 1 is easily established
using Stirling’s formula.
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The implementation solves further deep and difficult problems some exam-
ples of which are:

3: gosper(sub(n=n+1,binomial(n,k)^2/binomial(2*n,n))-
binomial(n,k)^2/binomial(2*n,n),k);

2
((binomial(n + 1,k) *binomial(2*n,n)

2
- binomial(2*(n + 1),n + 1)*binomial(n,k) )*(2*k - 3*n - 1)

2 3 2
*(k - n - 1) )/((2*(2*(n + 1) - k)*(2*n + 1)*k - 3*n - 7*n - 5*n

- 1)*binomial(2*(n + 1),n + 1)*binomial(2*n,n))

4: gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)
-----------------------

n + 1

5: gosper((-25+15*k+18*k^2-2*k^3-k^4)/
(-23+479*k+613*k^2+137*k^3+53*k^4+5*k^5+k^6),k);

2
- (2*k - 15*k + 8)*k

----------------------------
3 2

23*(k + 4*k + 27*k + 23)

The Gosper algorithm is not capable to give antidifferences depending on
the harmonic numbers

Hk :=
k∑

j=1

1
j

,

e. g.
∑

k Hk = (k + 1)(Hk+1 − 1), but, is able to give a proof, instead, for
the fact that Hk does not possess a closed form evaluation:

6: gosper(1/k,k);

***** Gosper algorithm: no closed form solution exists

The following code gives the solution to a summation problem proposed in
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Gosper’s original paper [1]. Let

fk =
k∏

j=1

(a + b j + c j2) and gk =
k∏

j=1

(e + b j + c j2) .

Then a closed form solution for

∑
k

fk−1

gk

is found by the definitions

7: operator ff,gg$

8: let {ff(~k+~m) => ff(k+m-1)*(c*(k+m)^2+b*(k+m)+a)
when (fixp(m) and m>0),

ff(~k+~m) => ff(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+a)
when (fixp(m) and m<0)}$

9: let {gg(~k+~m) => gg(k+m-1)*(c*(k+m)^2+b*(k+m)+e)
when (fixp(m) and m>0),

gg(~k+~m) => gg(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+e)
when (fixp(m) and m<0)}$

and the calculation

10: gosper(ff(k-1)/gg(k),k);

ff(k)
---------------
(a - e)*gg(k)

11: clear ff,gg$

Similarly closed form solutions of
∑

k
fk−m

gk
for positive integers m can be

obtained, as well as of
∑

k
fk−1

gk
for

fk =
k∏

j=1

(a + b j + c j2 + d j3) and gk =
k∏

j=1

(e + b j + c j2 + d j3)

and for analogous expressions of higher degree polynomials.



5 REDUCE OPERATOR EXTENDED GOSPER 7

5 REDUCE operator EXTENDED GOSPER

The extended_gosper operator is an implementation of an extended version
of Gosper’s algorithm given by Koepf [2].

• extended_gosper(a,k) determines an antidifference gk of ak when-
ever there is a number m such that hk − hk−m = ak, and hk is an
m-fold hypergeometric term, i. e.

hk/hk−m is a rational function with respect to k.

If it does not return a solution, then such a solution does not exist.

• extended_gosper(a,k,m) determines an m-fold antidifference hk of
ak, i. e. hk − hk−m = ak, if it is an m-fold hypergeometric term.

Examples:

12: extended_gosper(binomial(k/2,n),k);

k k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)

2 2
-------------------------------------------------------

2*(n + 1)

13: extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)

7

6 REDUCE operator SUMRECURSION

The sumrecursion operator is an implementation of the (fast) Zeilberger
algorithm.

• sumrecursion(f,k,n) determines a holonomic recurrence equation
for

sum(n) =
∞∑

k=−∞
f(n, k)

with respect to n, applying extended_sumrecursion if necessary, see
§ 7. The resulting expression equals zero.
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• sumrecursion(f,k,n,j) searches for a holonomic recurrence equa-
tion of order j. This operator does not use extended_sumrecursion
automatically. Note that if j is too large, the recurrence equation may
not be unique, and only one particular solution is returned.

A simple example deals with Equation (1)2

14: sumrecursion(binomial(n,k),k,n);

2*sum(n - 1) - sum(n)

The whole hypergeometric database of the Vandermonde, Gauß, Kummer,
Saalschütz, Dixon, Clausen and Dougall identities (see [9]), and many more
identities (see e. g. [2]), can be obtained using sumrecursion. As examples,
we consider the difficult cases of Clausen and Dougall:

15: summand:=factorial(a+k-1)*factorial(b+k-1)/(factorial(k)*
factorial(-1/2+a+b+k))*factorial(a+n-k-1)*factorial(b+n-k-1)/
(factorial(n-k)*factorial(-1/2+a+b+n-k))$

16: sumrecursion(summand,k,n);

(2*a + 2*b + 2*n - 1)*(2*a + 2*b + n - 1)*sum(n)*n

- 2*(2*a + n - 1)*(a + b + n - 1)*(2*b + n - 1)*sum(n - 1)

17: summand:=pochhammer(d,k)*pochhammer(1+d/2,k)*pochhammer(d+b-a,k)*
pochhammer(d+c-a,k)*pochhammer(1+a-b-c,k)*pochhammer(n+a,k)*
pochhammer(-n,k)/(factorial(k)*pochhammer(d/2,k)*
pochhammer(1+a-b,k)*pochhammer(1+a-c,k)*pochhammer(b+c+d-a,k)*
pochhammer(1+d-a-n,k)*pochhammer(1+d+n,k))$

18: sumrecursion(summand,k,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

2Note that with REDUCE Version 3.5 we use the global operator summ instead of sum
to denote the sum.
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corresponding to the statements

4F3

(
a , b , 1/2− a− b− n ,−n

1/2 + a + b , 1− a− n , 1− b− n

∣∣∣∣∣ 1
)

=
(2a)n (a + b)n (2b)n

(2a + 2b)n (a)n (b)n

and

7F6

(
d , 1 + d/2 , d + b− a , d + c− a , 1 + a− b− c , n + a ,−n

d/2 , 1 + a− b , 1 + a− c , b + c + d− a , 1 + d− a− n , 1 + d + n

∣∣∣∣∣ 1
)

=
(d + 1)n (b)n (c)n (1 + 2 a− b− c− d)n

(a− d)n (1 + a− b)n (1 + a− c)n (b + c + d− a)n

(compare next section), respectively.

Other applications of the Zeilberger algorithm are connected with the veri-
fication of identities. To prove the identity

n∑

k=0

(
n

k

)3

=
n∑

k=0

(
n

k

)2(
2k

n

)
,

e. g., we may prove that both sums satisfy the same recurrence equation

19: sumrecursion(binomial(n,k)^3,k,n);

2 2 2
(7*n - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

20: sumrecursion(binomial(n,k)^2*binomial(2*k,n),k,n);

2 2 2
(7*n - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

and finally check the initial conditions:

21: sub(n=0,k=0,binomial(n,k)^3);

1

22: sub(n=0,k=0,binomial(n,k)^2*binomial(2*k,n));

1

23: sub(n=1,k=0,binomial(n,k)^3)+sub(n=1,k=1,binomial(n,k)^3);



7 REDUCE OPERATOR EXTENDED SUMRECURSION 10

2

24: sub(n=1,k=0,binomial(n,k)^2*binomial(2*k,n))+
sub(n=1,k=1,binomial(n,k)^2*binomial(2*k,n));

2

7 REDUCE operator EXTENDED SUMRECURSION

The extended_sumrecursion operator is an implementation of an extension
of the (fast) Zeilberger algorithm given by Koepf [2].

• extended_sumrecursion(f,k,n,m,l) determines a holonomic recur-

rence equation for sum(n) =
∞∑

k=−∞
f(n, k) with respect to n if f(n, k)

is an (m, l)-fold hypergeometric term with respect to (n, k), i. e.

F (n, k)
F (n−m, k)

and
F (n, k)

F (n, k − l)

are rational functions with respect to both n and k. The resulting
expression equals zero.

• sumrecursion(f,k,n) invokes extended_sumrecursion(f,k,n,m,l)
with suitable values m and l, and covers therefore the extended algo-
rithm completely.

Examples:

25: extended_sumrecursion(binomial(n,k)*binomial(k/2,n),k,n,1,2);

sum(n - 1) + 2*sum(n)

which can be obtained automatically by

26: sumrecursion(binomial(n,k)*binomial(k/2,n),k,n);

sum(n - 1) + 2*sum(n)

Similarly, we get

27: extended_sumrecursion(binomial(n/2,k),k,n,2,1);

2*sum(n - 2) - sum(n)
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28: sumrecursion(binomial(n/2,k),k,n);

2*sum(n - 2) - sum(n)

29: sumrecursion(hyperterm({a,b,a+1/2-b,1+2*a/3,-n},
{2*a+1-2*b,2*b,2/3*a,1+a+n/2},4,k)/(factorial(n)*2^(-n)/
factorial(n/2))/hyperterm({a+1,1},{a-b+1,b+1/2},1,n/2),k,n);

sum(n - 2) - sum(n)

In the last example, the progam chooses m = 2, and l = 1 to derive the
resulting recurrence equation (see [2], Table 3, (1.3)).

8 REDUCE operator HYPERRECURSION

Sums to which the Zeilberger algorithm applies, in general are special cases
of the generalized hypergeometric function

pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣ x
)

:=
∞∑

k=0

(a1)k · (a2)k · · · (ap)k

(b1)k · (b2)k · · · (bq)k k!
xk

with upper parameters {a1, a2, . . . , ap}, and lower parameters {b1, b2, . . . , bq}.
If a recursion for a generalized hypergeometric function is to be established,
you can use the following REDUCE operator:

• hyperrecursion(upper,lower,x,n) determines a holonomic recur-

rence equation with respect to n for pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣ x
)

,

where upper= {a1, a2, . . . , ap} is the list of upper parameters, and
lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.
If Zeilberger’s algorithm does not apply, extended_sumrecursion of
§ 7 is used.

• hyperrecursion(upper,lower,x,n,j) (j ∈ IN) searches only for a
holonomic recurrence equation of order j. This operator does not use
extended_sumrecursion automatically.

Therefore

30: hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*sum(n - 1) + (c + n - 1)*sum(n)
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establishes the Vandermonde identity

2F1

( −n , b

c

∣∣∣∣∣ 1
)

=
(c− b)n

(c)n
,

whereas

31: hyperrecursion({d,1+d/2,d+b-a,d+c-a,1+a-b-c,n+a,-n},
{d/2,1+a-b,1+a-c,b+c+d-a,1+d-a-n,1+d+n},1,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

proves Dougall’s identity, again.

If a hypergeometric expression is given in hypergeometric notation, then the
use of hyperrecursion is more natural than the use of sumrecursion.

Moreover you may use the REDUCE operator

• hyperterm(upper,lower,x,k) that yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k

(b1)k · (b2)k · · · (bq)k k!
xk

with upper parameters upper= {a1, a2, . . . , ap}, and lower parameters
lower= {b1, b2, . . . , bq}

in connection with hypergeometric terms.

The operator sumrecursion can also be used to obtain three-term recur-
rence equations for systems of orthogonal polynomials with the aid of known
hypergeometric representations. By ([4], (2.7.11a)), the discrete Krawtchouk
polynomials k

(p)
n (x,N) have the hypergeometric representation

k(p)
n (x,N) = (−1)n pn

(
N

n

)
2F1

( −n , −x

−N

∣∣∣∣∣
1
p

)
,

and therefore we declare

32: krawtchoukterm:=
(-1)^n*p^n*binomial(NN,n)*hyperterm({-n,-x},{-NN},1/p,k)$

and get the three three-term recurrence equations
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33: sumrecursion(krawtchoukterm,k,n);

((2*p - 1)*n - nn*p - 2*p + x + 1)*sum(n - 1)

- (n - nn - 2)*(p - 1)*sum(n - 2)*p - sum(n)*n

34: sumrecursion(krawtchoukterm,k,x);

(2*(x - 1)*p + n - nn*p - x + 1)*sum(x - 1)

- ((x - 1) - nn)*sum(x)*p - (p - 1)*(x - 1)*sum(x - 2)

35: sumrecursion(krawtchoukterm,k,NN);

((p - 2)*nn + n + x + 1)*sum(nn - 1) + (n - nn)*(p - 1)*sum(nn)

+ (nn - x - 1)*sum(nn - 2)

with respect to the parameters n, x, and N respectively.

9 REDUCE operator HYPERSUM

With the operator hypersum, hypergeometric sums are directly evaluated
in closed form whenever the extended Zeilberger algorithm leads to a recur-
rence equation containing only two terms:

• hypersum(upper,lower,x,n) determines a closed form representa-

tion for pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣ x
)

, where upper= {a1, a2, . . . , ap}
is the list of upper parameters, and lower= {b1, b2, . . . , bq} is the list
of lower parameters depending on n. The result is given as a hyperge-
ometric term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which
is to be interpreted as follows: Its jth part is the solution valid for all
n of the form n = mk + j − 1 (k ∈ IN0). In particular, if the resulting
list contains two terms, then the first part is the solution for even n,
and the second part is the solution for odd n.

Examples [2]:

36: hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);
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pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)
-------------------------------------------------
pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)

37: hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)
-------------------------
pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in factorial-Γ-
binomial-Pochhammer notation into a pure Γ function representation:

38: togamma(ws);

gamma(a - d + 1)*gamma(a + n + 1)
-----------------------------------
gamma(a - d + n + 1)*gamma(a + 1)

Here are some m-fold symmetric results:

39: hypersum({-n,-n,-n},{1,1},1,n);

n/2 2 n 1 n
( - 27) *pochhammer(---,---)*pochhammer(---,---)

3 2 3 2
{----------------------------------------------------,

n 2
factorial(---)

2
0}

40: hypersum({-n,n+3*a,a},{3*a/2,(3*a+1)/2},3/4,n);

2 n 1 n
pochhammer(---,---)*pochhammer(---,---)

3 3 3 3
{-----------------------------------------------------,

3*a + 2 n 3*a + 1 n
pochhammer(---------,---)*pochhammer(---------,---)

3 3 3 3
0,

0}
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These results correspond to the formulas (compare [2])

3F2

( −n ,−n ,−n

1 , 1

∣∣∣∣∣ 1
)

=





0 if n odd
(1/3)n/2 (2/3)n/2

(n/2)!2
(−27)n/2 otherwise

and

3F2

( −n , n + 3a , a

3a/2 , (3a + 1)/2

∣∣∣∣∣
3
4

)
=





0 if n 6= 0 (mod 3)
(1/3)n/3 (2/3)n/3

(a + 1/3)n/3 (a + 2/3)n/3
otherwise .

10 REDUCE operator SUMTOHYPER

With the operator sumtohyper, sums given in factorial-Γ-binomial-Poch-
hammer notation are converted into hypergeometric notation.

• sumtohyper(f,k) determines the hypergeometric representation of
∞∑

k=−∞
fk, i. e. its output is c*hypergeometric(upper,lower,x), cor-

responding to the representation

∞∑

k=−∞
fk = c · pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣ x
)

,

where upper= {a1, a2, . . . , ap} and lower= {b1, b2, . . . , bq} are the lists
of upper and lower parameters.

Examples:

41: sumtohyper(binomial(n,k)^3,k);

hypergeometric({ - n, - n, - n},{1,1},-1)

42: sumtohyper(binomial(n,k)/2^n-sub(n=n-1,binomial(n,k)/2^n),k);

- n + 2 - n
- hypergeometric({----------, - n,1},{1,------},-1)

2 2
------------------------------------------------------

n
2
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11 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is neces-
sary to find out whether or not ak/ak−1 is a rational function with respect to
k. For the purpose to decide whether or not an expression involving powers,
factorials, Γ function terms, binomial coefficients, and Pochhammer symbols
is a hypergeometric term, the following simplification operators can be used:

• simplify_gamma(f) simplifies an expression f involving only rational,
powers and Γ function terms according to a recursive application of
the simplification rule Γ (a + 1) = aΓ (a) to the expression tree. Since
all Γ arguments with integer difference are transformed, this gives a
decision procedure for rationality for integer-linear Γ term product
ratios.

• simplify_combinatorial(f) simplifies an expression f involving pow-
ers, factorials, Γ function terms, binomial coefficients, and Pochham-
mer symbols by converting factorials, binomial coefficients, and Poch-
hammer symbols into Γ function terms, and applying simplify_gamma
to its result. If the output is not rational, it is given in terms of Γ func-
tions. If you prefer factorials you may use

• gammatofactorial (rule) converting Γ function terms into factorials
using Γ (x) → (x− 1)!.

• simplify_gamma2(f) uses the duplication formula of the Γ function
to simplify f .

• simplify_gamman(f,n) uses the multiplication formula of the Γ func-
tion to simplify f .

The use of simplify_combinatorial(f) is a safe way to decide the ra-
tionality for any ratio of products of powers, factorials, Γ function terms,
binomial coefficients, and Pochhammer symbols.

Example:

43: simplify_combinatorial(sub(k=k+1,krawtchoukterm)/krawtchoukterm);

(k - n)*(k - x)
--------------------
(k - nn)*(k + 1)*p

From this calculation, we see again that the upper parameters of the hy-
pergeometric representation of the Krawtchouk polynomials are given by
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{−n,−x}, its lower parameter is {−N}, and the argument of the hyperge-
ometric function is 1/p.

Other examples are

44: simplify_combinatorial(binomial(n,k)/binomial(2*n,k-1));

gamma( - (k - 2*n - 2))*gamma(n + 1)
----------------------------------------
gamma( - (k - n - 1))*gamma(2*n + 1)*k

45: ws where gammatofactorial;

factorial( - k + 2*n + 1)*factorial(n)
----------------------------------------
factorial( - k + n)*factorial(2*n)*k

46: simplify_gamma2(gamma(2*n)/gamma(n));

2*n 2*n + 1
2 *gamma(---------)

2
-----------------------

2*sqrt(pi)

47: simplify_gamman(gamma(3*n)/gamma(n),3);

3*n 3*n + 2 3*n + 1
3 *gamma(---------)*gamma(---------)

3 3
----------------------------------------

2*sqrt(3)*pi

12 Tracing

If you set

48: on zb_trace;

tracing is enabled, and you get intermediate results, see [2].

Example for the Gosper algorithm:

49: gosper(pochhammer(k-n,n),k);
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k - 1
a(k)/a(k-1):= -----------

k - n - 1

Gosper algorithm applicable

p:= 1

q:= k - 1

r:= k - n - 1

degreebound := 0

1
f:= -------

n + 1

Gosper algorithm successful

pochhammer(k - n,n)*k
-----------------------

n + 1

Example for the Zeilberger algorithm:

50: sumrecursion(binomial(n,k)^2,k,n);

2

n

F(n,k)/F(n-1,k):= ----------

2

(k - n)

2

(k - n - 1)

F(n,k)/F(n,k-1):= --------------

2

k

Zeilberger algorithm applicable

applying Zeilberger algorithm for order:= 1
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2 2 2

p:= zb_sigma(1)*k - 2*zb_sigma(1)*k*n + zb_sigma(1)*n + n

2 2

q:= k - 2*k*n - 2*k + n + 2*n + 1

2

r:= k

degreebound := 1

2*k - 3*n + 2

f:= ---------------

n

2 2 2 3 2

- 4*k *n + 2*k + 8*k*n - 4*k*n - 3*n + 2*n

p:= -------------------------------------------------

n

Zeilberger algorithm successful

4*sum(n - 1)*n - 2*sum(n - 1) - sum(n)*n

51: off zb_trace;

13 Global Variables and Switches

The following global variables and switches can be used in connection with
the ZEILBERG package:

• zb_trace, switch; default setting off. Turns tracing on and off.

• zb_direction, variable; settings: down, up; default setting down.

In the case of the Gosper algorithm, either a downward or a forward
antidifference is calculated, i. e., gosper finds gk with either

ak = gk − gk−1 or ak = gk+1 − gk,

respectively.

In the case of the Zeilberger algorithm, either a downward or an up-
ward recurrence equation is returned. Example:
52: zb_direction:=up$
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53: sumrecursion(binomial(n,k)^2,k,n);

sum(n + 1)*n + sum(n + 1) - 4*sum(n)*n - 2*sum(n)

54: zb_direction:=down$

• zb_order, variable; settings: any nonnegative integer; default set-
ting 5. Gives the maximal order for the recurrence equation that
sumrecursion searches for.

• zb_factor, switch; default setting on. If off, the factorization of the
output usually producing nicer results is suppressed.

• zb_proof, switch; default setting off. If on, then several intermediate
results are stored in global variables:

• gosper_representation, variable; default setting nil.

If a gosper command is issued, and if the Gosper algorithm is ap-
plicable, then the variable gosper_representation is set to the list
of polynomials (with respect to k) {p,q,r,f} corresponding to the
representation

ak

ak−1
=

pk

pk−1

qk

rk
, gk =

qk+1

pk
fk ak ,

see [1]. Examples:
55: on zb_proof;

56: gosper(k*factorial(k),k);

(k + 1)*factorial(k)

57: gosper_representation;

{k,k,1,1}

58: gosper(
1/(k+1)*binomial(2*k,k)/(n-k+1)*binomial(2*n-2*k,n-k),k);

((2*k - n + 1)*(2*k + 1)*binomial( - 2*(k - n), - (k - n))

*binomial(2*k,k))/((k + 1)*(n + 2)*(n + 1))
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59: gosper_representation;

{1,

(2*k - 1)*(k - n - 2),

(2*k - 2*n - 1)*(k + 1),

- (2*k - n + 1)
------------------}
(n + 2)*(n + 1)

• zeilberger_representation, variable; default setting nil.

If a sumrecursion command is issued, and if the Zeilberger algorithm
is successful, then the variable zeilberger_representation is set to
the final Gosper representation used, see [3].

14 Messages

The following messages may occur:

• ***** Gosper algorithm: no closed form solution exists

Example input:

gosper(factorial(k),k).

• ***** Gosper algorithm not applicable

Example input:

gosper(factorial(k/2),k).

The term ratio ak/ak−1 is not rational.

• ***** illegal number of arguments

Example input:

gosper(k).

• ***** Zeilberger algorithm fails. Enlarge zb_order

Example input:

sumrecursion(binomial(n,k)*binomial(6*k,n),k,n)

For this example a setting zb_order:=6 is needed.
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• ***** Zeilberger algorithm not applicable

Example input:

sumrecursion(binomial(n/2,k),k,n)

One of the term ratios f(n, k)/f(n− 1, k) or f(n, k)/f(n, k− 1) is not
rational.

• ***** SOLVE given inconsistent equations

You can ignore this message that occurs with Version 3.5.
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