Characteristics

 

 

Home
Bibliography
Characteristics
Documentation
Available Packages
Related Projects
Obtaining REDUCE
Registration

To support its use, the REDUCE computer algebra system has been designed with the following characteristics in mind:

bulletCode stability. Various versions of REDUCE have been in use for over forty years. There has been a steady stream of improvements and refinements since then, with the source being subject to wide review by the user community. REDUCE has thus evolved into a powerful system whose critical components are highly reliable, stable and efficient.
bulletWide user base. A particular algebra system is often chosen for a given calculation because of its widespread use in a particular application area, with existing packages and templates being used to speed up problem solving. As evidenced by approximately 1000 reports listed in the current bibliography, REDUCE has a large and dedicated user community working in just about every branch of computational science and engineering. A large number of special purpose packages are available in support of this, with many contributed by users.
bulletFull source code availability. From the beginning, it has been possible to obtain the complete REDUCE source code, including the "kernel." Consequently, REDUCE is a valuable educational resource and a good foundation for experiments in the discipline of computer algebra. Many users do in fact effectively modify the source code for their own purposes.
bulletFlexible updating. One advantage of making all code accessible to the user is that it is relatively easy to incorporate patches to correct small problems or extend the applicability of existing code to new problem areas. World Wide Web servers allow users to get such updates and complete new packages as they become available, without having to wait for a formal system release.
bulletState-of-the-art algorithms. Another advantage of an "open" system is that there is a shared development effort involving both distributors and users. As a result, it is easier to keep the code up-to-date, with the best current algorithms being used soon after their development. At the present time, we believe REDUCE has superior code for solving nonlinear polynomial equations using Groebner bases, real and complex root finding to any precision, exterior calculus calculations and optimized numerical code generation among others. Its simplification strategy, using a combination of efficient polynomial manipulation and flexible pattern matching is focused on giving users as natural a result as possible without excessive programming.
bulletAlgebraic focus. REDUCE aims at being part of a complete scientific environment rather than being the complete environment itself. As a result, users can take advantage of other state-of-the-art systems specializing in numerical and graphical calculations, rather than depend on just one system to provide everything. To this end, REDUCE provides facilities for writing results in a form compatible with common numerical programming languages (such as C or Fortran) or document processors such as TeX.
bulletPortability. Careful design for portability means REDUCE is often available on new or uncommon machines soon after their release. This has led to significant user communities throughout the world. At the present time, REDUCE is readily available on essentially all computers.
bulletUniformity. Even though REDUCE is supported with different Lisps on many different platforms, much attention has been paid to making all versions perform in the same manner regardless of implementation. As a result, users can have confidence that their calculations will not behave differently if they move them to a different machine.